

Lecture 4: Floats

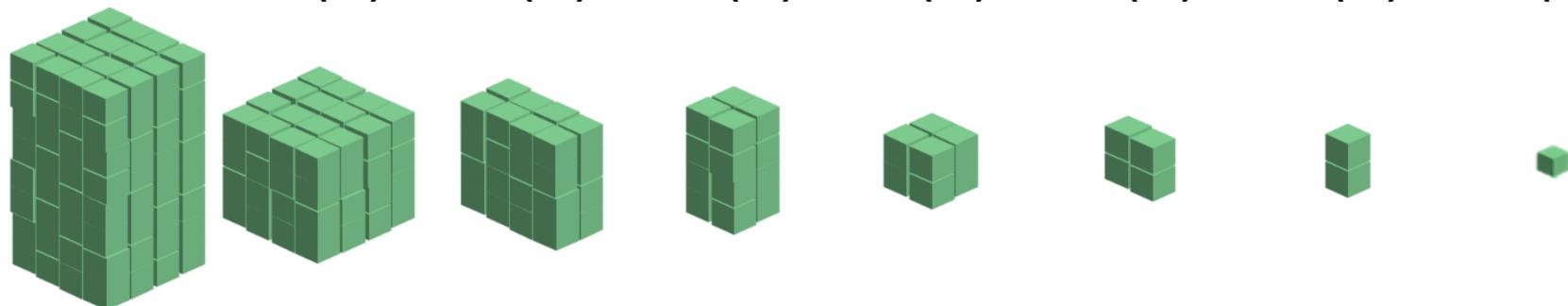
CS 105

Spring 2026

Review: Representing Integers

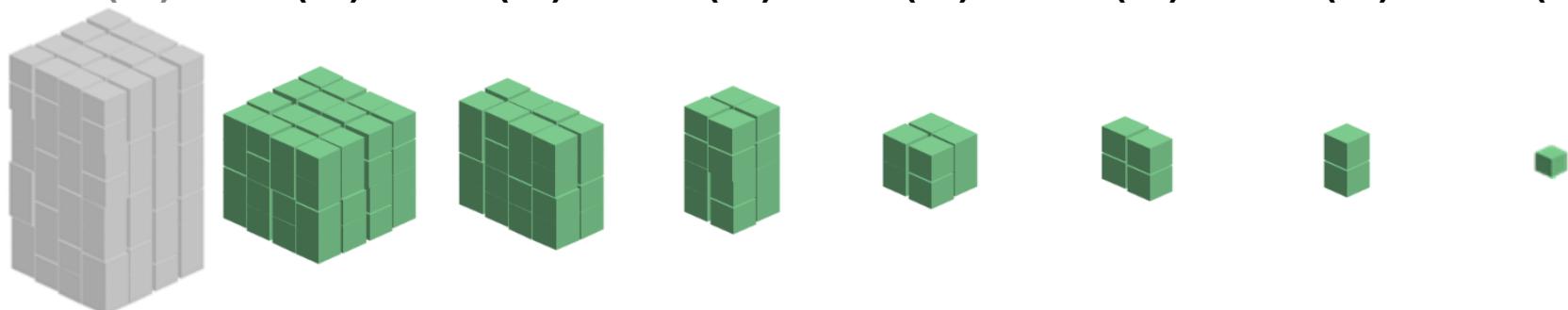
- unsigned:

$128 (2^7)$ $64 (2^6)$ $32 (2^5)$ $16 (2^4)$ $8 (2^3)$ $4 (2^2)$ $2 (2^1)$ $1 (2^0)$



- signed (two's complement aka normal integers):

$-128 (2^7)$ $64 (2^6)$ $32 (2^5)$ $16 (2^4)$ $8 (2^3)$ $4 (2^2)$ $2 (2^1)$ $1 (2^0)$



Fractional binary numbers



- Representation 2^{-j}
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: $\sum_{k=-j}^i (b_k \cdot 2^k)$

Example: Fractional Binary Numbers

- What is 1001.101_2 ?

$$= 8 + 1 + \frac{1}{2} + \frac{1}{8} = 9 \frac{5}{8} = 9.625$$

- What is the binary representation of $13 \frac{9}{16}$?

1101. 1001

Exercise 1: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
 - $5 \frac{3}{4}$
 - $2 \frac{7}{8}$
 - $1 \frac{7}{16}$
- Translate the following fractional binary numbers to their decimal representation
 - $.011$
 - $.11$
 - 1.1

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations
 - Value Representation
 - $1/3$ $0.0101010101[01]..._2$
 - $1/5$ $0.001100110011[0011]..._2$
 - $1/10$ $0.0001100110011[0011]..._2$
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form: $(-1)^s \cdot M \cdot 2^E$
 - **Sign bit** s determines whether number is negative or positive
 - **Significand** M normally a (binary) fractional value in range [1.0,2.0)
 - **Exponent** E weights value by power of two
- Examples:
 - 1.0
 - -1.25
 - 64
 - .625

Exercise 2: Floating Point Numbers

- For each of the following numbers, specify a bit s , binary fractional number M in $[1.0,2.0)$ and a binary number E such that the number is equal to $(-1)^s \cdot M \cdot 2^E$
 - $5 \frac{3}{4}$
 - $2 \frac{7}{8}$
 - $-1 \frac{1}{2}$
 - $-3 \frac{3}{4}$

Floating Point Representation

- Numerical Form: $(-1)^s \cdot M \cdot 2^E$
 - **Sign bit** s determines whether number is negative or positive
 - **Significand** M normally a fractional value in range [1.0,2.0)
 - **Exponent** E weights value by power of two
- Encoding:

- s is sign bit s
- exp field encodes E (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 - (2^{k-1} - 1)$ — **bias**
- frac field encodes M (but is not equal to M)
 - normally $M = 1.f_{n-1} \dots f_1 f_0$

Float (32 bits):

- $k = 8, n = 23$
- bias = 127

Double (64 bits)

- $k=11, n = 52$
- bias = 1023

Example: Floats

- What fractional number is represented by the bytes 0x3ec00000? Assume big-endian order.

- s is sign bit **s**
- exp field encodes **E** (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 - (2^{k-1} - 1)$
- frac field encodes **M** (but is not equal to M)
 - normally $M = 1.f_{n-1} \dots f_1 f_0$

Float (32 bits):

- k = 8, n = 23
- bias = 127

$$(-1)^s \cdot M \cdot 2^E$$

0	011 1110	1100 0000	0000 0000	0000 0000	0000 0000
---	----------	-----------	-----------	-----------	-----------

$$s=0 \quad \text{exp}=125 \quad \text{frac} = 100000000000000000000000_2$$

$$s=0 \quad E = -2 \quad M = 1.10000000000000000000000_2 = 1.5_{10}$$

$$(-1)^0 \cdot 1.5_{10} \cdot 2^{-2} = 1 \cdot \frac{3}{2} \cdot \frac{1}{4} = \frac{3}{8} = .375_{10} \quad (-1)^0 \cdot 1.1_2 \cdot 2^{-2} = .011_2 = \frac{1}{4} + \frac{1}{8} = .375_{10}$$

Exercise 3: Floats

- What fractional number is represented by the bytes 0x423c0000? Assume big-endian order.

- s is sign bit **s**
- exp field encodes **E** (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 - (2^{k-1} - 1)$
- frac field encodes **M** (but is not equal to M)
 - normally $M = 1.f_{n-1} \dots f_1 f_0$

- Float (32 bits):
- k = 8, n = 23
 - bias = 127

$$(-1)^s \cdot M \cdot 2^E$$

s	exp	frac
---	-----	------

1

8-bits

23-bits

Limitation so far...

- How do we represent zero?

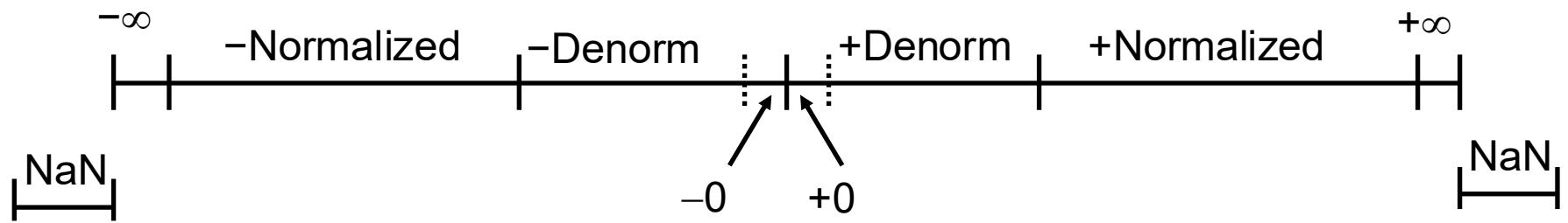
Normalized and Denormalized

$$(-1)^s \cdot M \cdot 2^E$$

Normalized Values

- exp is neither all zeros nor all ones (normal case)
 - exponent is defined as $E = e_{k-1} \dots e_1 e_0 - \text{bias}$, where $\text{bias} = 2^{k-1} - 1$ (e.g., 127 for float or 1023 for double)
 - significand is defined as $M = 1.f_{n-1}f_{n-2} \dots f_0$
-
- Denormalized Values
 - exp is either all zeros or all ones
 - if all zeros: $E = 1 - \text{bias}$ and $M = 0.f_{n-1}f_{n-2} \dots f_0$
 - if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

Visualization: Floating Point Encodings



Limits of Floats

Denormalized Floats

- Smallest Power of 2
 - $M = 0.000\dots01 = 2^{-23}$
 - $\text{val} = 2^{-23} \cdot 2^{-126} = 2^{-149}$
- Biggest Power of 2
 - $M = 0.100\dots00 = 2^{-1}$
 - $\text{val} = 2^{-1} \cdot 2^{-126} = 2^{-127}$

Normalized Floats

- Smallest Power of 2
 - $M = 1.000\dots00$
 - $\text{exp} = 00000001 = 1$
 - $\text{val} = 1.0 \cdot 2^{1-127} = 2^{-126}$
- Biggest Power of 2
 - $M = 1.000\dots00 = 2^{-1}$
 - $\text{exp} = 11111110 = 254$
 - $\text{val} = 1.0 \cdot 2^{254-127} = 2^{127}$

s	exp	frac
---	-----	------

1 8-bits

23-bits

Example: Limits of Floats

- There are big gaps between representable numbers (when exponent is big)

0	111 1111	0111 1111	1111 1111	1111 1111	1111 1111	1111 1111	1111 1111
---	----------	-----------	-----------	-----------	-----------	-----------	-----------

s=0 E = 127

M = 1.111111111111111111111111111111₂

$$x = 1.111111111111111111111111111111_2 \cdot 2^{127}$$

$$y = 1.111111111111111111111111111110_2 \cdot 2^{127}$$

$$x - y = 0.00000000000000000000000000000001_2 \cdot 2^{127} = 1 \cdot 2^{-23} \cdot 2^{127} = 2^{104}$$

Correctness

- **Example 1: Is $(x + y) + z = x + (y + z)$?**
 - Ints: Yes!
 - Floats:
 - $(2^{30} + -2^{30}) + 3.14 \approx 3.14$
 - $2^{30} + (-2^{30} + 3.14) \approx 0.0$

Floating Point Operations

- All of the bitwise and logical operations still work
- Float arithmetic operations done by separate hardware unit (FPU)

Floating Point Addition

- Float operations done by separate hardware unit (FPU)

$$F_1 + F_2 = (-1)^{s_1} \cdot M_1 \cdot 2^{E_1} + (-1)^{s_2} \cdot M_2 \cdot 2^{E_2}$$

- Assume $E_1 \geq E_2$

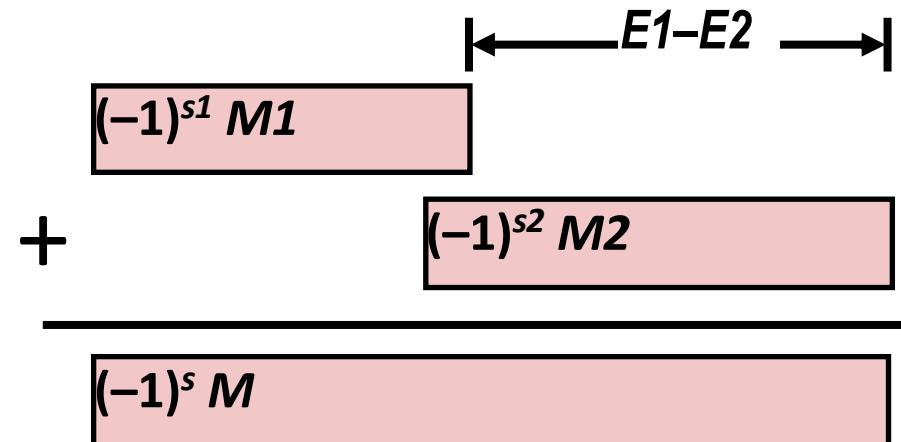
Get binary points lined up

- Exact Result: $(-1)^s \cdot M \cdot 2^E$

- Sign s , significand M :
 - Result of signed align & add
- Exponent E : E_1

- Fixing

- If $M \geq 2$, shift M right, increment E
- if $M < 1$, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit `frac` precision



Floating Point Multiplication

- $F_1 \cdot F_2 = (-1)^{s_1} \cdot M_1 \cdot 2^{E_1} \cdot (-1)^{s_2} \cdot M_2 \cdot 2^{E_2}$
- Exact Result: $(-1)^s \cdot M \cdot 2^E$
 - Sign s : $s1 \wedge s2$
 - Significand M : $M1 \times M2$
 - Exponent E : $E1 + E2$
- Fixing
 - If $M \geq 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit `frac` precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point in C

- C Guarantees Two Levels
 - **float** single precision (32 bits)
 - **double** double precision (64 bits)
- Conversions/Casting
 - Casting between **int**, **float**, and **double** changes bit representation
 - **double/float** → **int**
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - **int** → **double**
 - Exact conversion,
 - **int** → **float**
 - Will round

This is what most languages call floats!