Lecture 4: Floats

CS 105 Spring 2026

Review: Representing Integers

- unsigned:
128 (27) 64(2%) 32(25 16(24 8(2%) 4(22 2(2) 1(29

- signed (two's complement aka normal integers):
128 (27) 64(25) 32(2% 16(2% 8(2%) 4(2) 2(2') 1(29

PYY PR

Fractional binary numbers

2/

2i-1

4

2

1
bi |bi1| eee | b2 | b1 bolb-1 bo|bz| eee | b
12 — |
1/4
1/8

- Representation 27
- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number: ch:_j(bk . 25

Example: Fractional Binary Numbers
- Whatis 1001.101,7

—8+1+1+1—95—9625
B 2 8 8

- What is the binary representation of 13 9/167?

1101. 1001

Exercise 1: Fractional Binary Numbers

Translate the following fractional numbers to their binary
representation

5 3/4
27/8
17/16

Translate the following fractional binary numbers to their
decimal representation

.011
.11
1.1

Representable Numbers

- Limitation #1
- Can only exactly represent numbers of the form x/2%
- Other rational numbers have repeating bit representations

- Value Representation
- 1/3 0.0101010101[01]..2
- 1/5 0.001100110011[0011]..2

- 110 0.0001100110011[0011]..2

 Limitation #2

- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form: (=1)% - M - 2F
- Sign bit s determines whether number is negative or positive
- Significand M normally a (binary) fractional value in range [1.0,2.0)
- Exponent E weights value by power of two

- Examples:
- 1.0
- -1.25
- 64
- .625

Exercise 2: Floating Point Numbers

For each of the following numbers, specify a bit s, binary
fractional number M in [1.0,2.0) and a binary number E
such that the number is equal to (=1)5 - M - 2%

5 3/4
27/8
-11/2
-3/4

Floating Point Representation

- Numerical Form: (=1)% - M - 2F
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by power of two

- Encoding:
s | exp=ey_q1..1€ frac = f,_1 ... f1/o
- sis sign bits Float (32 bits):

- exp field encodes E (but is not equal to E) y E_= 8, 15723
* bias =

° = - k_l - .
normally E = e ..exeo (2 Df— bias Double (64 bits)
- frac field encodes M (but is not equal to M) « k=11,n=52
e normally M = 1. f,,_4 ... fifo * bias = 1023

Example: Floats

- What fractional number is represented by the bytes

(-D°-

0x3ec00000? Assume big-endian order.

s | exp=er_q...61€ frac = f,,_1 ... fifo
* sissign bits Float (32 bits):
« exp field encodes E (but is not equal to E) « k=8,n=23
« normally E = e,_; ...ejeq — (271 — 1) * bias =127
« frac field encodes M (but is not equal to M) < E
e normally M =1.f,_1 ... f1ifo (_1) M -2
0011 1110 1100 0000 0000 0000 0000 0000
s=0 exp=125 frac = 10000000000000000000000,
s=0 E=-2 M =1.10000000000000000000000, = 1.5+

5 31 3 0 5 1 1
- 1.5 27 —1'5'2—5— 37510 (-1)°%-11,-2 =.0112=Z+§=.37510

Exercise 3: Floats

- What fractional number is represented by the bytes
0x423c0000? Assume big-endian order.

s | exp=er_q...61€ frac = f,,_1 ... fifo
* sissign bits Float (32 bits):
« exp field encodes E (but is not equal to E) « k=8,n=23
« normally E = e,_; ...ejeq — (271 — 1) * bias =127

« frac field encodes M (but is not equal to M)

« normally M = 1.f,_q ... fifo (=1)5-M-2E

_ S ‘exp ‘frac |

8-bits 23-bits

Limitation so far..

- How do we represent zero?

Normalized and Denormalized

S |exp frac

(=1)5-M -2k
Normalized Values

- exp is neither all zeros nor all ones (normal case)

- exponent is defined as E = e;,_, ...e; e, — bias, where
bias = 2¥~1 — 1 (e.g., 127 for float or 1023 for double)

- significand is definedas M = 1. f,,_1f,—2 - fo

« Denormalized Values

- exp is either all zeros or all ones
- ifallzeros:E=1—biasand M = 0. f,,_1fn_> - fo
- if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

Visualization: Floating Point Encodings

_OOI —Normalized I—Denorm N E+Denorm| +Normalized +IOO

| | taln: | |
NaN / \ NaN
— -0 +0 —

Limits of Floats

Denormalized Floats Normalized Floats
- Smallest Power of 2 - Smallest Power of 2
- M=0.000...01=2723 - M=1.000...00
e val = 2723 .27126 — »—-149 - exp = 00000001 =1

- val = 1.0 - 217127 = 27126

- Biggest Power of 2
- M =1.000...00 = 271
- exp = 11111110 = 254
-val=1.0- 2254—127 — 2127

- Biggest Power of 2
- M=0.100...00 =271
. val = 2—1 . 2—126 — 2—127

_ S ‘exp ‘frac |

8-bits 23-bits

Example: Limifs of Floats

- There are big gaps between representable numbers
(when exponent is big)

0111 1111 0111 1111 1111 1111 1111 1111

s=0 E =127 M=1.11111111111111111111111,

x =1.11111111111111111111111, - 2127
y=111111111111111111111110, - 2127

x —y = 0.00000000000000000000001, - 2127 =1 .2723. 2127 = 2104

Correctness

- Example1:Is(x+y)+z = x+ (y +2)?
- Ints: Yes!

- Floats:
. (2730 +-2"30) + 3.14 c8.14
- 2730 + (-2"30 + 3.14) 0.0

Floating Point Operations

- All of the bitwise and logical operations still work

- Float arithmetic operations done by separate hardware
unit (FPU)

i
Floating Point Addition

- Float operations done by separate hardware unit (FPU)
° F1 + FZ — (_1)51 y M]_ y ZEl + (_1)51 y M1 . 2E1

- Assume E1 >= E2 Get binary points lined up
|<_E1—E2 —]
- Exact Result: (—1)5 - M - 2E -
- Sign s, significand M: |(_1) A

- Result of signed align & add

-1)2 M2
- Exponent E: E1 + |()

- Fixing [Frm

- If M 2 2, shift M right, increment E

- if M <1, shift M left k positions, decrement E by k
- Overflow if E out of range

- Round M to fit £rac precision

i
Floating Point Multiplication

e Fi - F,=(=1)% M, -2E2 . (=1)51. M, - 252
- Exact Result: (=1)5 - M - 2%

- Sign s: s1”s2
- Significand M: M1x M2
- Exponent E: E1+E2

- Fixing

- If M = 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit £rac precision

- Implementation
- Biggest chore is multiplying significands

i
Floating Pointin C

- C Guarantees Two Levels
- float single precision (32 bits)

. : This i hat |
. double double precision (64 bits) 4mm 'S !s What mostlanguages

call floats!

- Conversions/Casting
- Casting between int, float, and double changes bit
representation
- double/float — int
 Truncates fractional part
« Like rounding toward zero
« Not defined when out of range or NaN: Generally sets to TMin
*int — double
- Exact conversion,
- int — float
« Will round

	Slide 1: Lecture 4: Floats
	Slide 2: Review: Representing Integers
	Slide 3: Fractional binary numbers
	Slide 4: Example: Fractional Binary Numbers
	Slide 5: Exercise 1: Fractional Binary Numbers
	Slide 6: Representable Numbers
	Slide 7: Floating Point Representation
	Slide 8: Exercise 2: Floating Point Numbers
	Slide 9: Floating Point Representation
	Slide 10: Example: Floats
	Slide 11: Exercise 3: Floats
	Slide 12: Limitation so far…
	Slide 13: Normalized and Denormalized
	Slide 14: Visualization: Floating Point Encodings
	Slide 15: Limits of Floats
	Slide 16: Example: Limits of Floats
	Slide 17: Correctness
	Slide 18: Floating Point Operations
	Slide 19: Floating Point Addition
	Slide 20: Floating Point Multiplication
	Slide 21: Floating Point in C

