Lecture 3: Representing Signed Integers

CS 105 Spring 2026

Review: Binary Numbers

128 (27) 64 (2% 32(25 16(2% 8(2%) 4(23 2(2) 1(29

Representing Signed Integers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude
. Signed(x) = (—1)*w-1 . YW 2 x; - 21

+- 64(29 32(2% 16(24) 8(2%) 4(23) 2(2) 1(29

Representing Signed Integers

- Option 2: excess-K
- Choose a positive K in the middle of the unsigned range
- Signed(x) = YWt x; - 28 — 2wt

i=

128 (27) 64(2°) 32(25 16(2%) 8(2%) 4(22) 2(2) 1(29 -128

Representing Signed Integers

- Option 3: two’s complement
- Like unsigned, except the high-order contribution is negative
. Signed(x) = —x,,_1 - 2V L+ YW P x; - 2

128 (-27) 64(25) 32(25 16(2%) 8(2%) 4(2 2(2) 1(29

Important Signed Integers

Ox7F Ox7FFF OX7FFFFFFF Ox7FFFFFFFFFFFFFFF
0x80 0x8000 Ox80000000 0x8000000000000000
0x00 0x0000 OxG0000000 0x0000000000000000

OXFF OXFFFF OXFFFFFFFF OXFFFFFFFFFFFFFFFF

Exercise 1: (Signed) Binary Numbers

- Consider the following one-byte binary values. What is the
(signed) integer interpretation of these values?

1. 01101001
2. 10010111
3. 010000160
4. 10111110

- What is the one-byte binary representation of the
following integers?
. 47

-X == -X+1-1 == -1-x41 == 111.1-x+1 = ~x+1

Integers in C

C Data Type Size (bytes) C Data Type Size (bytes)

unsigned char 1 char 1
unsigned short 2 short 2
unsigned int 4 int 4
unsigned long 8 long 8

Casting between Numeric Types

- Casting from shorter to longer types preserves the value

- Casting from longer to shorter types drops the high-order
bits

- Casting between signed/unsigned types preserves the
bits (it just changes the interpretation)

- Implicit casting occurs in assignments and parameter
lists. In mixed expressions, signed values are implicitly
cast to unsigned

« Source of many errors!

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -3;

- Complete the following table

| Expression | Decimal | Binary |
X -17

sy -3
(unsigned int) x

(int) sy
(short) x

IR
When to Use Unsigned

- Rarely

- When doing multi-precision arithmetic, or when you need
an extra bit of range ... but be careful!

int example () {
int a[5] = {1,2,3,4,5};

for (unsigned int i = len-2; i >= 0; i--){
a[i] += a[i+l];
}

return a[i]

}

IR
Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on
iInteger binary types

Integer Integer
Operand Operand

v v

A N/ B
Status
Status
Opcode Y

Integer
Result

Bitwise vs Logical Operations in C

- Bitwise Operators &, |, ~, A
« View arguments as bit vectors
- operations applied bit-wise in parallel

- Logical Operators &&, ||, !
- View 0 as “False”
- View anything nonzero as “True”
- Always return O or 1
- Early termination

- Shift operators <<, >>

- Left shift fills with zeros
- For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations

- What is the binary representation of each of the following
expressions? Assume signed char data type (one byte).

1. ~(-30)

2. -30&22
3. -30&&22
4. 22<<1

5. 22>>1

6. -30>>1

i
Addition Example

- Compute 5 + -3 assuming all ints are stored as four-bit
signed values

1 1
0101

+1101
O010O =2(Base-10)

Exactly the same as unsigned numbers!
... but with different error cases

i
Addition/Subtraction with Overflow

- Compute 5 + 6 assuming all ints are stored as four-bit
signed values

1
0101

+ 01410
1011 =-5(Base-10)

Error Cases

- Assume w-bit signed values

—2-2w-1 —2w-1 0 2wl 1 2-(2%"1-1)
@ @ @ @ o—

[]

representable values

Possible values of x + y

x+y —2¥ "1 (positive overflow)
s X+, Yy =4x+Yy. (normal)
x +y+2Y "1 (negative overflow)

- overflow has occurred iff x >0andy>0andx+,, y <0
orx<Oandy<Oandx+,, y>0

IR
Exercise 4: Binary Addition

- Given the following 5-bit signed values, compute their
sum and indicate whether or not an overflow occurred

x|y | xsy overflow?

00010 00101
01100 00100
10100 10001

Multiplication Example
- Compute 3 x 2 assuming all ints are stored as four-bit

signed values
O011
X0010

O0O0O0
+00110
O1 10 =6(Base-10)

Exactly like unsigned multiplication!
... except with different error cases

Multiplication Example
- Compute 5 x 2 assuming all ints are stored as four-bit

signed values
0101
X0010

O00O0
+o01010
1010 =-6(Base-10)

Error Cases

- Assume w-bit unsigned values

_22(w-1) —w-1 o 2vw1-1 22(w-1)
@ ® @ @ o—
[

L
representable values

Possible values of x %y

« x %L,y = U2T ((x - y) mod 2%)

Exercise 5: Binary Multiplication

- Given the following 3-bit signed values, compute their
product and indicate whether or not an overflow occurred

x|y | xy loverflow?
100 101

010 011
111 010

	Slide 1: Lecture 3: Representing Signed Integers
	Slide 2: Review: Binary Numbers
	Slide 3: Representing Signed Integers
	Slide 4: Representing Signed Integers
	Slide 5: Representing Signed Integers
	Slide 6: Important Signed Integers
	Slide 9: Exercise 1: (Signed) Binary Numbers
	Slide 10: Integers in C
	Slide 11: Casting between Numeric Types
	Slide 12: Exercise 2: Casting
	Slide 13: When to Use Unsigned
	Slide 14: Arithmetic Logic Unit (ALU)
	Slide 15: Bitwise vs Logical Operations in C
	Slide 16: Exercise 3: Bitwise vs Logical Operations
	Slide 17: Addition Example
	Slide 18: Addition/Subtraction with Overflow
	Slide 19: Error Cases
	Slide 20: Exercise 4: Binary Addition
	Slide 21: Multiplication Example
	Slide 22: Multiplication Example
	Slide 23: Error Cases
	Slide 24: Exercise 5: Binary Multiplication

