
CS 105 Spring 2026

Lecture 3: Representing Signed Integers

Review: Binary Numbers

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

0 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

Representing Signed Integers
• Option 1: sign-magnitude

• One bit for sign; interpret rest as magnitude

• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = −1 𝑥𝑤−1
 ⋅ σ𝑖=0

𝑤−2 𝑥𝑖 ⋅ 2𝑖

+/- 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

-

1 1 1 1 1 1 1 1

Representing Signed Integers
• Option 2: excess-K

• Choose a positive K in the middle of the unsigned range

• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = σ𝑖=0
𝑤−1 𝑥𝑖 ⋅ 2𝑖 − 2𝑤−1

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20) -128

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

1 1 1 1 1 1 1 1

Representing Signed Integers
• Option 3: two’s complement

• Like unsigned, except the high-order contribution is negative

• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = −𝑥𝑤−1 ⋅ 2𝑤−1 + σ𝑖=0
𝑤−2 𝑥𝑖 ⋅ 2𝑖

-128 (-27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

1 1 1 1 1 1 1 1

Important Signed Integers

8 16 32 64

TMax 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF

TMin 0x80 0x8000 0x80000000 0x8000000000000000

0 0x00 0x0000 0x00000000 0x0000000000000000

-1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF

Exercise 1: (Signed) Binary Numbers

• Consider the following one-byte binary values. What is the

(signed) integer interpretation of these values?

1. 01101001

2. 10010111

3. 01000010

4. 10111110

• What is the one-byte binary representation of the

following integers?

• 47

• -47

105

-105

66

-66

-x == -x+1-1 == -1-x+1 == 111…1-x+1 = ~x+1

00010111

11101001

Integers in C

C Data Type Size (bytes)

unsigned char 1

unsigned short 2

unsigned int 4

unsigned long 8

C Data Type Size (bytes)

char 1

short 2

int 4

long 8

Casting between Numeric Types

• Casting from shorter to longer types preserves the value

• Casting from longer to shorter types drops the high-order

bits

• Casting between signed/unsigned types preserves the

bits (it just changes the interpretation)

• Implicit casting occurs in assignments and parameter

lists. In mixed expressions, signed values are implicitly

cast to unsigned
• Source of many errors!

Exercise 2: Casting

• Assume you have a machine with 6-bit integers/3-bit shorts

• Assume variables: int x = -17; short sy = -3;

• Complete the following table

Expression Decimal Binary

x -17

sy -3

(unsigned int) x

(int) sy

(short) x

When to Use Unsigned

• Rarely

• When doing multi-precision arithmetic, or when you need

an extra bit of range … but be careful!

int example(){

 int a[5] = {1,2,3,4,5};

 for (unsigned int i = len-2; i >= 0; i--){

 a[i] += a[i+1];

 }

 return a[i]

}

Arithmetic Logic Unit (ALU)

• circuit that performs bitwise operations and arithmetic on

integer binary types

Bitwise vs Logical Operations in C
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors

• operations applied bit-wise in parallel

• Logical Operators &&, ||, !

• View 0 as “False”

• View anything nonzero as “True”

• Always return 0 or 1

• Early termination

• Shift operators <<, >>

• Left shift fills with zeros

• For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations
• What is the binary representation of each of the following

expressions? Assume signed char data type (one byte).

1. ~(-30)

2. -30 & 22

3. -30 && 22

4. 22 << 1

5. 22 >> 1

6. -30 >> 1

= ~(11100010) = 00011101 = 29

= 11100010 && 00010110 = 00000001 = 1

= 00010110 << 1 = 00101100 = 44

= 11100010 >> 1 = 11110001 = -15

= 11100010 & 00010110 = 00000010 = 2

= 00010110 >> 1 = 00001011 = 11

Addition Example

• Compute 5 + -3 assuming all ints are stored as four-bit

signed values

Exactly the same as unsigned numbers!

0 1 0 1
+ 1 1 0 1

0 1 0 0

1

… but with different error cases

= 2 (Base-10)

1

Addition/Subtraction with Overflow

• Compute 5 + 6 assuming all ints are stored as four-bit

signed values

0 1 0 1
+ 0 1 1 0

1 1 0 1

1

= -5 (Base-10)

Error Cases

• Assume 𝑤-bit signed values

• 𝑥 +𝑤 𝑦 = ൞

𝑥 + 𝑦 − 2𝑤−1 (positive overflow)

𝑥 + 𝑦. (normal)

𝑥 + 𝑦 + 2𝑤−1 (negative overflow)

• overflow has occurred iff 𝑥 > 0 and y > 0 and 𝑥 +𝑤 𝑦 < 0

 or 𝑥 < 0 and y < 0 and 𝑥 +𝑤 𝑦 > 0

0 2𝑤−1 − 1 2 ⋅ (2𝑤−1 − 1)

[]
representable values

[]
Possible values of 𝑥 + 𝑦

−2𝑤−1−2 ⋅ 2𝑤−1

Exercise 4: Binary Addition

• Given the following 5-bit signed values, compute their

sum and indicate whether or not an overflow occurred

x y x+y overflow?

00010 00101

01100 00100

10100 10001

00101

10000

00101

no

yes

yes

x+y overflow?

+ _

Multiplication Example

• Compute 3 x 2 assuming all ints are stored as four-bit

signed values

Exactly like unsigned multiplication!

0 0 1 1
x 0 0 1 0

… except with different error cases

= 6 (Base-10)

0 0 0 0
0 0 1 1 0

0 1 1 0

Multiplication Example

• Compute 5 x 2 assuming all ints are stored as four-bit

signed values

0 1 0 1
x 0 0 1 0

= -6 (Base-10)

0 0 0 0
0 1 0 1 0+ _

1 0 1 0

Error Cases

• Assume 𝑤-bit unsigned values

• 𝑥 ∗𝑤
𝑡 𝑦 = 𝑈2𝑇(𝑥 ⋅ 𝑦 mod 2𝑤)

Possible values of 𝑥 ∗ 𝑦

0 2𝑤−1 − 1 22(𝑤−1)

[]
representable values

[)

−2𝑤−1−22(𝑤−1)

Exercise 5: Binary Multiplication

• Given the following 3-bit signed values, compute their

product and indicate whether or not an overflow occurred

x y x*y overflow?

100 101

010 011

111 010

100

110

110

yes

yes

no

x*y overflow?

	Slide 1: Lecture 3: Representing Signed Integers
	Slide 2: Review: Binary Numbers
	Slide 3: Representing Signed Integers
	Slide 4: Representing Signed Integers
	Slide 5: Representing Signed Integers
	Slide 6: Important Signed Integers
	Slide 9: Exercise 1: (Signed) Binary Numbers
	Slide 10: Integers in C
	Slide 11: Casting between Numeric Types
	Slide 12: Exercise 2: Casting
	Slide 13: When to Use Unsigned
	Slide 14: Arithmetic Logic Unit (ALU)
	Slide 15: Bitwise vs Logical Operations in C
	Slide 16: Exercise 3: Bitwise vs Logical Operations
	Slide 17: Addition Example
	Slide 18: Addition/Subtraction with Overflow
	Slide 19: Error Cases
	Slide 20: Exercise 4: Binary Addition
	Slide 21: Multiplication Example
	Slide 22: Multiplication Example
	Slide 23: Error Cases
	Slide 24: Exercise 5: Binary Multiplication

