CS105 - Computer Systems Spring 2025
Assignment 2: Data Lab

Due: Thursday, February 6, 2025 at 11:59pm PT

The purpose of this assignment is to give you familiarity with bit-level representations of signed integers
and floating point numbers and with various operations performed on binary values. You will accomplish
the goal by solving a series of programming “puzzles.” Even though many of the puzzles are quite artificial,
you will find yourself thinking much more about bits in working your way through them.

You must work in a group of two people in solving the problems. You should complete this assignment
using pair programming, and you and your partner should submit one solution. [strongly recommend that
you and your partner brainstorm before coding!

Getting Started

The materials for this lab are available on the course web page and on the course VM. I strongly recommend
that you complete this assignment on the VM.

First, ensure that you are connected to the Pomona network or the Pomona VPN. Then ssh to the VM using
your Pomona username (e.g., abcd1234):

% ssh USERNAMEQitbdcv-1nx04p.campus.pomona.edu
and unpack the starter code into your home directory on the VM:
% tar xvf /cs105/starters/datalab.tar

This will cause a number of files to be unpacked in the directory. The only file you will be modifying is
bits.c.

Aside: In the future, you can save yourself a bit of password-typing time by creating an SSH keypair (if you
don’t have one already) using a command like ssh-keygen -t ed25519, then copying your public key to
the server using ssh-copy-id USERNAMEitbdcv-1nx04p.campus.pomona.edu.

You can also create an SSH configuration file to simplify things further. You should be able to make a file
(on your own computer!) at a path like /. ssh/config with contents like so:

Host c¢s105
HostName itbdcv-1nx04p.campus.pomona.edu
User USERNAME

From then on, you can type ssh cs105 or scp -r cs105:/02-datalab . and you’re all good.

Begin your lab work by opening the file in an editor and put both your names in the comments at the top of
the bits. c file. Do this right away!

The bits. c file contains a skeleton for each of the 8 programming puzzles. Your assignment is to complete
each function skeleton using limited types and numbers of C logical and arithmetic operators. Additionally,
the first 6 puzzles must be completed using only straight-line code (no loops or conditionals) and no function
calls; also, you are not allowed to use any constants longer than 8 bits. (The rules are relaxed for the two

2-1

float puzzles). You may use local variables, but you should declare all such variables at the top of functions
before doing anything else. Failure to do so may break the autograder. You have been warned!

Each function heading tells you what is allowed. See the comments in bits.c for detailed rules and a
discussion of the desired coding style.

Compiling the Code

We strongly suggest that you do all your work on the course VM. You can be sure that the support programs
dlc (for testing compliance with the coding rules) and btest (for testing correctness) will work there. In
the past, some students have found that these programs do not run correctly on other machines.

I strongly recommend that you work through the functions one at a time, testing each one as you go. We
have given you a Makefile to ease the burden of running the compiler. You can use it to compile everything,
including all testing code, by typing

% make

You may ignore the warning about a “non-includable file.”

The d1c Program

The dlc program, a modified version of an ANSI C compiler, will be used to check your programs for
compliance with the coding style rules. The typical usage is

% ./dlc bits.c

* Type ./dlc -help for a list of command line options. The README file is also helpful.

* You can use the -e flag to instruct d1c to count the number of operations you use (in addition to
checking for disallowed operations).

* The d1lc program runs silently unless it detects a problem.

* Do not include <stdio.h> in your bits. c file (it confuses d1c results in non-intuitive errors).

* In ANSI C, you must make all variable declarations at the beginning of a function. The following
code is not accepted by dlc.

int mask = 0x55 + (0x55 << 8);

mask = mask + (mask << 16);

int shift = (x >> 1);

int sum = (shift & mask) + (x & mask);

The btest Program

Once you pass the style-checker with dlc, you can test your function for correctness with btest. Note
that you will need to re-compile btest every time you make changes to bits.c. You can do this with the
general command

% make
or by typing
% make btest

To test your solution for correctness, you should then run the test code

2-2

% ./btest
If you only want to test one function, you can use the -f flag, for example

% ./btest -f bitXor

The driver.pl Program

I'will use . /btest and . /d1c to grade your assignment via the Gradescope autograder. You can check your
current grade yourself by running the exact same grading script as follows:

% ./driver.pl

Evaluation

Your score will be computed out of a maximum of 40 points. Each function will be evaluated separately for
correctness and performance.

* Correctness (20 points): We will use the programs driver.pl, btest, and d1lc, supplied with the
starter code, to evaluate your solution. No points will be given for a function if d1c reports an illegal
operator or another error.

* Performance (16 points): We will use the programs driver.pl and dlc, supplied with the labora-
tory materials, to evaluate your code. No points will be given for a function if d1lc reports an illegal
operator, too many operators, or another error.

* Style (2 points): For this assignment, “good style” is easy to attain. It means that your files are
submitted correctly, your names are present at the top of each file, that your code is understandable
and consistently indented, that comments—when necessary to explain—are present and easy to read,
and that there is no extraneous material.

* Feedback (2 points): An additional 2 points will be awarded for submitting a completed feedback
file.

Hint: Remember that you can run the Perl script driver.pl to see your current Correctness and Perfor-
mance scores. It will also report the total number of operations you used.

Submission Instructions

When you have finished, submit two files, bits.c and feedback.txt, on Gradescope. As always, you can
download files from the VM to your local machine by running the scp command from your local machine.
Be sure to tag your partner as your group member and submit both files in the same submission!

Part I: Bit Manipulatinos

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max Ops” field gives the maximum number
of operators you are allowed to use to implement each function.

Function bit0r computes the bitwise or. You may only use the operators & and ~. Function bitXor should
duplicate the behavior of the operation ~, using only the operations & and ~.

Function copyLSB replicates a copy of the least significant bit (the “ones” column) in all 32 bits of the result.

2-3

Function conditional returns y if x is true and z otherwise. Hint: note that the parameters for these
functions are declared as signed integers. Unlike unsigned integers, right shifting values of type int uses

arithmetic shifting. However, right shifting a negative value is undefined behavior, so I suggest casting the
inputs to unsigned ints.

Name Description Rating | Max Ops
bitOr(x,y) x|y using only & and ~ 1 8
bitXor(x,y) ~ using only & and ~ 1 14
copyLSB(x) Set all bits to LSB of x 2 5
conditional(x,y,z) |x 7y : z 3 16

Table 1: Bit-Level Manipulation Functions.

2-4

Part II: Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers.
Function add0K determines whether its two arguments can be added together without overflow.

Function absVal returns the absolute value | x| .

Name Description Rating | Max Ops
add0K (x,y) | Does x+y overflow? 3 20
absVal(x) | returns |x| 4 10

Table 2: Arithmetic Functions

Part I1: Float Arithmetic

Table 3 describes a set of functions that make use of single precision floating point representation of integers.
For these puzzles, you may use

Function float_abs returns the absolute value of the argument.

Function float_f2i casts a float to an int.

Name Description Rating | Max Ops
float_abs(f) | Returns | £ | 2 10
float _f2i(f) | Returns (int) f 4 30

Table 3: Arithmetic Functions

Important Note: The coding rules are relaxed for floats: you may use conditionals and large constants to
solve these puzzles. See notes in the starter code for details.

Part II1: Feedback

Create a file called feedback.txt that answers the following questions:

1. How long did each of you spend on this assignment?

2. Any comments on this assignment?

How you answer these questions will not affect your grade, but whether you answer them will.

2-5

