Lifting Boolean Algebras to Function Spaces

Theorem 1 Let A be a non-empty set and let B be a complete atomic Boolean algebra. Then the operations on B can be lifted on the function space, $A \rightarrow B$ by point-wise definition, and $A \rightarrow B$ forms a complete atomic Boolean algebra.

By point-wise definition, we mean that we define operations on functions in terms of the operations on the values of the functions. For example $f \land g = h$ iff for all a in A, $h(a) = f(a) \land g(a)$. We can write these using lambda notation as follows:

1. $f \land_{(A,B)} g = \lambda a. f(a) \land_B g(a)$
2. $f \lor_{(A,B)} g = \lambda a. f(a) \lor_B g(a)$
3. $\neg_{(A,B)} f = \lambda a. \neg_B f(a)$
4. $0_{(A,B)} = \lambda a. 0_B$
5. $1_{(A,B)} = \lambda a. 1_B$

It is easy to see that the resulting structure is a complete Boolean algebra. The only tricky part is showing that it is atomic.

The atoms are not the constant functions giving the same atom. Instead they are functions that are 0 for all but a single element of the domain, and the image of that element is an atom in B. I.e., for all $a \in A$ and $b \in B$, define $f_{a,b} : A \rightarrow B$ s.t. $f_{a,b}(a) = b$ and $f_{a,b}(x) = 0$ for all $x \neq a$.

It is easy to show that each of these elements are atoms. That is, there is nothing between them and 0, and all functions in $A \rightarrow B$ have a lower bound that is an atom.

Now we define $BOOL$ to be the smallest set such that

1. $t \in BOOL$
2. If $a \in TYPE$ and $b \in BOOL$ then $(a,b) \in BOOL$.

By the above theorem, every element of $BOOL$ is a complete atomic Boolean algebra.

In the particular where the function space is (A,t), each element of the function space can be considered to be the characteristic function of a relation on A.

Generalizing negation, conjunction, and disjunction

We can use the fact that we can lift the Boolean algebra operations to higher types in order to define \neg, \land, and \lor on functional types.

1. \neg_t, \land_t, and \lor_t are the standard logical operations on truth values.
2. Let $a = (b,c)$ be a type in $BOOL$. Then \neg_a, \land_a, and \lor_a are obtained from the similar operations on c by lifting. I.e., If $P, Q \in a$, and $x \in b$, then
 - $\neg_a = \lambda P. \lambda x. \neg_c P(x)$.
 - $\land_a = \lambda P. \lambda Q. \lambda x. P(x) \land_c Q(x)$.
Recall that the type of the semantics of intransitive verbs like “walk” is \(\langle e, t \rangle\). We typically write the translation as \(\lambda s. \text{walk}(s)\). By the above definition, the translation of “not walking” should be:

\[
\neg_{\langle e, t \rangle} \lambda s. \text{walk}(s).
\]

Therefore the translation of “John is not walking” is

\[
(\lambda v. v@j)(\lambda x. \neg_t \text{walk}(x)) = (\lambda x. \neg_t \text{walk}(x))@j = \neg_t \text{walk}(j)
\]

Similar examples show the same behavior for transitive verbs, which have type \(\langle \langle \langle e, t \rangle, t \rangle, \langle e, t \rangle \rangle\).

Here is the translation of “not pet”:

\[
\neg_{\langle \langle \langle e, t \rangle, t \rangle, \langle e, t \rangle \rangle} \lambda o. \lambda s. \neg_t o@((\lambda x. \text{pet}(s, x))) = \lambda o. \lambda s. \neg_t o@((\lambda x. \text{pet}(s, x)) = \lambda s. \neg_t ((\lambda x. \text{pet}(s, x)))@r = \lambda s. \neg_t \text{pet}(s, r)
\]

To translate “Ann does not pet Rover”, we begin with “not pet Rover”:

\[
(\lambda o. \lambda s. \neg_t (o@((\lambda x. \text{pet}(s, x))))) (\lambda v. v@r) = \lambda s. \neg_t ((\lambda v. v@r)@((\lambda x. \text{pet}(s, x))) = \lambda s. \neg_t ((\lambda x. \text{pet}(s, x))@r = \lambda s. \neg_t \text{pet}(s, r)
\]

We omit the details, but “Ann does not pets Rover” then translates as \(\neg_t \text{pet}(a, r)\) as expected.

[Note that “does” can simply be ignored as a syntactic place-holder.]

The same kind of construction works with “and”. For example, we can translate “Ann and every man” as

\[
(\lambda v. v@a) \land_{\langle (e, t), t \rangle} (\lambda v. \forall x. (\text{man}(x) \rightarrow v@x))
\]

which is equivalent to

\[
\lambda v. (v@a \land \forall x. (\text{man}(x) \rightarrow v@x))
\]

As expected, “Ann and every man walk” is translated by applying the above representation to the meaning of walking, obtaining:

\[
\text{walk}(a) \land \forall x. (\text{man}(x) \rightarrow \text{walk}(x))
\]