Lecture 33: Concurrency III & Graphs

CS 62
Spring 2019
William Devanny & Alexandra Papoutsaki

Some slides based on those from Dan Grossman, U. of Washington
Volatile

- Atomic action: effectively happens all at once
 - $x++$ is not an atomic action!
- Java contains volatile keyword
- Changes to a volatile variable are always visible to other threads
- Accesses don’t count as data races
- Implementation forces memory consistency
 - though slower!
- Really for experts -- better to use locks.
Lock granularity

• Coarse-grained: Fewer locks, i.e., more objects per lock
 • Example: One lock for entire data structure (e.g., array)
 • Example: One lock for all bank accounts

• Fine-grained: More locks, i.e., fewer objects per lock
 • Example: One lock per data element (e.g., array index)
 • Example: One lock per bank account

• “Coarse-grained vs. fine-grained” is really a continuum.
Granularity trade-offs

• Coarse-grained advantages:
 • Simpler to implement
 • Faster/easier to implement operations that access multiple locations (because all guarded by the same lock)
 • Much easier for operations that modify data-structure shape

• Fine-grained advantages:
 • More simultaneous access (performance when coarse-grained would lead to unnecessary blocking)

• Guideline: Start with coarse-grained (simpler) and move to fine-grained (performance) only if contention on the coarser locks becomes an issue. Alas, often leads to bugs.
Critical-section granularity

- A second, orthogonal granularity issue is critical section size
 - How much work to do while holding lock(s)
- If critical sections run for too long:
 - Performance loss because other threads are blocked (contending)
- If critical sections are too short:
 - Bugs because you broke up something where other threads should not be able to see intermediate state

- **Guideline**: Don’t do expensive computations or I/O in critical sections, but also don’t introduce race conditions
Don’t roll your own

- Most data structures provided in standard libraries
 - Point of lectures is to understand the key trade-offs and abstractions
- Especially true for concurrent data structures
 - Far too difficult to provide fine-grained synchronization without race conditions
 - Standard thread-safe libraries like ConcurrentHashMap
- Guideline: Use built-in libraries whenever they meet your needs
 - e.g., Vector vs ArrayList. Vector is synchronized, ArrayList assumes program is thread-safe
Deadlock

Explain Deadlock, and we’ll hire you.

Hire me, and I’ll explain it to you.

let's discuss the salary.
Deadlock

class BankAccount {
 ...
 synchronized void withdraw(int amt) { ... }
 synchronized void deposit(int amt) { ... }
 synchronized void transferTo(int amt, BankAccount a) {
 this.withdraw(amt);
 a.deposit(amt);
 }
}
The deadlock

Suppose x and y are static fields holding accounts

Thread 1: x.transferTo(1,y)

acquire lock for x
withdraw 1 from x

Thread 2: y.transferTo(1,x)

acquire lock for y
withdraw 1 from y
block on lock for x
Deadlock in general

- A deadlock occurs when there are threads T_1, \ldots, T_n such that:
 - For $i = 1, \ldots, n - 1$, T_i is waiting for a resource held by T_{i+1}
 - T_n is waiting for a resource held by T_1
- In other words, there is a cycle of waiting
 - Can formalize as a graph of dependencies with cycles bad
- Deadlock avoidance in programming amounts to techniques to ensure a cycle can never arise
Back to our example

- Options for deadlock-proof transfer:

 1. Make a smaller critical section: `transferTo` not synchronized
 - Exposes intermediate state after `withdraw` before `deposit`
 - May be okay here, but exposes wrong total amount in bank

 2. Coarsen lock granularity: one lock for all accounts allowing transfers between them
 - Works, but sacrifices concurrent deposits/withdrawals

 3. Give every bank-account a unique number and always acquire locks in the same order
 - Entire program should obey this order to avoid cycles
 - Code acquiring only one lock can ignore the order
Concurrency summary

- Concurrent programming allows multiple threads to access shared resources (e.g., hash table, work queue)
- Introduces new kinds of bugs:
 - Data races and Bad Interleavings
 - Deadlocks
- Requires synchronization
 - Locks for mutual exclusion
 - Other Synchronization Primitives
- Guidelines for correct use help avoid common pitfalls
- Shared Memory model is not only approach, but other approaches (e.g., message passing) are not painless either
Graphs

- Represent relationships that exist between pairs of objects
- Nothing to do with charts and function plots!
- Extremely versatile, can be used to represent many problems
The Graph ADT

A graph $G = (V, E)$

- V is a finite, non-empty set of vertices (or nodes)
- E is a binary relation on V
 (that is, E is a collection of edges that connects pairs of vertices)
- Edges are either \textit{directed} or \textit{undirected}
Applications

• Transportation networks (flights, roads, etc.)
 • flights and flight patterns.
 • what sort of questions might we ask? What sort of application might we be interested in having a graph?
 • booking flights, picking shortest time? shortest distance?
 • airlines save fuel, number of people who use the route

• Google maps
 • driving directions, mapping out sightseeing
More Applications

• Communications networks/utility networks
 • electrical grid, phone networks, computer networks
 • minimize cost for building infrastructure
 • minimize losses, route packets faster

• Social networks
 • Does this person know that person.
 • Can this person introduce me to that person – job opportunities
Undirected Graphs

Example: $G = (V, E)$, where

- $V = \{A, B, C, D\}$
- $E = \{\{A, C\}, \{A, B\}, \{A, D\}, \{B, D\}\}$
Definitions for Undirected Graphs

- **subgraph**: is a subset of a graph's edges (and associated vertices) that constitutes a graph.

- **path**: a sequence of connected vertices.
 - **simple path** – a path where all vertices occur only once.

- **path length**: number of edges in the path.
 - Example: path C-A-D-B has length 3.

- **cycle**: path of length ≥ 1 that begins and ends with the same vertex.
 - Example: path A-D-B-A is a cycle.

- **simple cycle**: a simple path that begins and ends with the same vertex.
More Definitions for Undirected Graphs

- **self loop**: Cycle consisting of one edge and one vertex.
- **adjacent vertices**: when connected by an edge.
- **incident edge**: the edge that is incident on two adjacent vertices
 - Edge (A,B) above is incident on adjacent vertices A and B
- **degree**: number of incident edges on a vertex.
- **simple graph**: a graph with no self loops or parallel edges.
- **acyclic graph**: a graph with no cycles.
Even More Definitions for Undirected Graphs

- **connected vertices**: if path that connects them exists
- **connected graph**: a graph where every pair of vertices is connected by a path.
- **tree**: acyclic connected graph
- **forest**: disjoint set of trees
Directed Graphs (Digraphs)

Example: $G = (V, E)$, where

- $V = \{1, 3, 9, 13\}$
- $E = \{(1,3), (3,1), (13,1), (9,9), (9,13)\}$
 Definitions for Digraphs

• **subgraph**: subset of a digraph's edges (and associated vertices) that constitutes a digraph.

• **path**: sequence of vertices with a (directed) edge pointing from each vertex to its successor
 • **simple path** – a path where all vertices occur only once.

• **length**: number of edges in the path.

• **cycle**: directed path of length ≥ 1 that begins and ends with the same vertex.
 • **simple cycle**: a simple path that begins and ends with the same vertex.
More Definitions for Digraphs

• **self loop**: Cycle consisting of one edge and one vertex.
 • Example: 9

• **outdegree**: number of edges pointing from it.

• **indegree**: number of edges pointing to it.

• **directed acyclic graph (DAG)**: a digraph with no directed cycles.
Even More Definitions for Digraphs

- **reachable vertex from v**: when there is a directed path from v to that vertex.
- **pair of strongly connected vertices**: if mutually reachable
- **strongly connected digraph**: there is a directed path from every vertex to every other vertex
- **weakly connected graph**: a digraph that would be connected if all of its directed edges were replaced by undirected edges.