Lecture 22: Binary Search Trees

CS 62
Fall 2018
Alexandra Papoutsaki & William Devanny
public class Student {
 private String name;
 private int age;

 public Student(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }

 @Override
 public String toString() {
 return "name=" + this.getName() + " age=" + this.getAge();
 }
}

How can you compare students by name in ascending order?

How can you compare students by age in descending order?
public class NameComparator implements Comparator<Student> {
 @Override
 public int compare(Student o1, Student o2) {
 return o1.getName().compareTo(o2.getName());
 }
}

public class AgeComparator implements Comparator<Student> {
 @Override
 public int compare(Student o1, Student o2) {
 return o2.getAge() - o1.getAge();
 }
}
Binary Search Trees

A binary tree is a binary search tree iff

• it is empty or
• if the value of every node is both greater than or equal to every value in its left subtree and less than or equal to every value in its right subtree.

• Definition allows duplicate values of the root node to fall on either side, but our code will prefer to have them on the left.
public class BinarySearchTree<E extends Comparable<E>> {
 protected BinaryTree<E> root;
 protected Comparator<E> ordering;
 public BinarySearchTree();
 public BinarySearchTree(Comparator<E> alternateOrder);
 public void add(E value);
 public boolean contains(E value);
 public E remove(E value);
 protected BinaryTree<E> locate(BinaryTree<E> root, E val);
 protected BinaryTree<E> predecessor(BinaryTree<E> node);
 protected Iterator<E> iterator(); //in-order traversal
}
Locating a Value

• Useful for *add*, *contains*, and *remove*
• Returns a pointer to the node with a given value
 • ...or to a node where that exact value could be added
• Recursive implementation (could be iterative)
Locating a Value

- Check current value vs. the search value
 - If equal, return this node
 - If smaller, locate within left subtree
 - Else within right subtree
 - If the appropriate subtree is empty, return this node
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
 E rootValue = root.value();
 BinaryTree<E> child;
 if (rootValue.equals(value)) return root; // found at root
 // look left if less-than, right if greater-than
 if (ordering.compare(rootValue, value) < 0) {
 child = root.right();
 } else {
 child = root.left();
 }
 // no child there: not in tree, return this node,
 // else keep searching
 if (child.isEmpty()) {
 return root;
 } else {
 return locate(child, value);
 }
}
Using `locate` to add a node

Case One: `locate` returns pointer to where node should be added
- If value less than returned node, create new left child
- If value greater than returned node, create new right child

```
10 = locate(root, 9)
14 = locate(root, 15)
```
Using `locate` to add a node

Case Two: `locate` returns pointer to node with same value
- Duplicates go in left subtree (could have chosen right)
- Where in the left subtree?

```
3 = locate(root, 3)
8 = locate(root, 8)
14 = locate(root, 14)
```
Using `locate` to add a node

Case Two: `locate` returns pointer to node with same value
- Duplicates go in left subtree (could have chosen right)
- *Should be the rightmost descendant of left tree*
Predecessor and Successor

Predecessor: the rightmost descendent in left subtree
• The next-smaller value in the tree

Successor: the leftmost descendent in right subtree
• The next-larger value in the tree
protected BinaryTree<E> predecessor(BinaryTree<E> root) {
 BinaryTree<E> result = root.left();
 while (!result.right().isEmpty()) {
 result = result.right();
 }
 return result;
}

protected BinaryTree<E> successor(BinaryTree<E> root) {
 BinaryTree<E> result = root.right();
 while (!result.left().isEmpty()) {
 result = result.left();
 }
 return result;
}
public void add(E value) {
 // add value to binary search tree
 // if there's no root, create value at root
 if (root.isEmpty()) {
 root = newNode;
 } else {
 BinaryTree<E> insertLocation = locate(root, value);
 E nodeValue = insertLocation.value();
 // The location returned is the successor or predecessor
 // of the to-be-inserted value
 if (ordering.compare(nodeValue, value) < 0) {
 insertLocation.setRight(newNode);
 } else {
 if (!insertLocation.left().isEmpty()) {
 // if value is in tree, we insert just before
 predecessor(insertLocation).setRight(newNode);
 } else {
 insertLocation.setLeft(newNode);
 }
 }
 }
 count++;
}
Removing nodes - Node is a leaf

Before removal:

```
       46
      /  \
    34    70
   /  \\   /  \   remove(52)
  11  44  52
 /  \\  /  \\  remove(11)
 6  19 44
```

After removal:

```
       46
      /  \
    34    70
   /  \\  /  \\   remove(52)
  11 44 52
 /  \\  /  \\  remove(11)
 6  19 44
```
Removing nodes - only one child

```
remove(70)
```

```
remove(70)
```
Removing a node with two subtrees

Remove the node and substitute with predecessor.

Remove(46)
Removing nodes

• Calling `remove(E val)` removes node with value `val`

• Predecessor of root becomes new root
 • Predecessor is in left subtree
 • Predecessor has no right subtree

• Complexity is $O(h)$ where h is height of tree
 • Worst-case $O(h)$ to locate
 • Worst-case $O(h)$ to find predecessor
Complexity

- locate, add, contains, remove are all $O(h)$
- Can we guarantee that h is $O(\log n)$?
 - Only if tree stays balanced!!
- Binary search trees that stay balanced:
 - AVL trees
 - Red-black trees
- We’ll do splay trees, which don’t guarantee balance
 - but guarantee good average behavior
 - easier to understand than alternatives
 - better than others if likely to go back to recent nodes