CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

22: Priority queues
Lecture 22: Priority Queues

- **Priority Queue**
- **Binary heap**
- **Heapsort**
Priority Queue ADT

- Two operations:
 - Delete the maximum
 - Insert

- Applications: load balancing and interruption handling in OS, Huffman codes for compression, A* search for AI, Dijkstra’s and Prim's algorithm for graph search, etc.

- How can we implement a priority queue efficiently?
Option 1: Unordered array

- The *lazy* approach where we defer doing work (deleting the maximum) until necessary.
- Insert is $O(1)$ (will be implemented as push in stacks).
- Delete maximum is $O(n)$ (have to traverse the entire array to find the maximum element).
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set initial size of heap to hold size elements
 public UnorderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public void insert(Key x) { pq[n++] = x; }

 public Key delMax() {
 int max = 0;
 for (int i = 1; i < n; i++)
 if (less(max, i)) max = i;
 exch(max, n-1);

 return pq[--n];
 }

 private boolean less(int i, int j) {
 return pq[i].compareTo(pq[j]) < 0;
 }

 private void exch(int i, int j) {
 Key swap = pq[i];
 pq[i] = pq[j];
 pq[j] = swap;
 }
}
Option 2: Ordered array

- The *eager* approach where we do the work (keeping the list sorted) up front to make later operations efficient.

- Insert is $O(n)$ (we have to find the index to insert and shift elements to perform insertion).

- Delete maximum is $O(1)$ (just take the last element which will be the maximum).
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set initial size of heap to hold size elements
 public OrderedArrayMaxPQ(int capacity) {
 pq = (Key[]) (new Comparable[capacity]);
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public Key delMax() { return pq[--n]; }

 public void insert(Key key) {
 int i = n-1;
 while (i >= 0 && less(key, pq[i])) {
 pq[i+1] = pq[i];
 i--;
 }
 pq[i+1] = key;
 n++;
 }

 private boolean less(Key v, Key w) {
 return v.compareTo(w) < 0;
 }
}
Option 3: Binary heap

- A new data structure!
- Will allow us to both insert and delete max in $O(\log n)$ running time.
- There is no way to implement a priority queue in such a way that insert and remove max can be achieved in $O(1)$ running time.
Lecture 22: Priority Queues

- Priority Queue
- Binary heap
- Heapsort
Heap-ordered binary trees

- A binary tree is **heap-ordered** if the key in each node is larger than or equal to the keys in that node’s two children (if any).

- Equivalently, the key in each node of a heap-ordered binary tree is smaller than or equal to the key in that node’s parent (if any).

- Moving up from any node, we get a non-decreasing sequence of keys.

- Moving down from any node we get a non-increasing sequence of keys.
Heap-ordered binary trees

- The largest key in a heap-ordered binary tree is found at the root!
- Max-heap.
 - There are min-heaps.
Binary heap representation

- We could use a linked representation but we would need three links for every node (one for parent, one for left subtree, one for right subtree).

- If we use complete binary trees, we can use instead an array.
 - Compact arrays vs explicit links means memory savings.
Binary heap

- **Binary heap**: array representation of complete heap-ordered binary tree.

 - A data structure that can efficiently support the basic priority queue operations (insert and remove maximum).

 - Items are stored in an array such that each key is guaranteed to be larger (or equal to) than the keys at two other specific positions.
Array representation

- Nothing is placed at index 0.
- Root is placed at index 1.
- Rest of nodes are placed in level order.
- No unnecessary indices and no wasted space because it’s complete.
Reuniting immediate family members.

- For every node at index k, its parent is at index $\lfloor k/2 \rfloor$.
- Its two children are at indices $2k$ and $2k + 1$.
- We can travel up and down the tree by using this simple arithmetic on array indices.
2.4 Binary Heap Demo
Swim/promote/percolate up/bottom up reheapify

- Scenario: a key becomes larger than its parent therefore it violates the heap-ordered property.

- To eliminate the violation:
 - Exchange key in child with key in parent.
 - Repeat until heap order restored.
Swim/promote/percolate up

```java
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```
Binary heap: insertion

- **Insert**: Add node at end in bottom level, then swim it up.
- **Cost**: At most $\log n + 1$ compares.

```java
public void insert(Key x) {
    pq[++n] = x;
    swim(n);
}
```
Binary heap: insertion

![Binary heap diagram](image)
Sink/demote/top down heapify

- Scenario: a key becomes smaller than one (or both) of its children’s keys.
- To eliminate the violation:
 - Exchange key in parent with key in larger child.
 - Repeat until heap order restored.
Sink/demote/top down heapify

```java
private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1))
            j++;
        if (!less(k, j))
            break;
        exch(k, j);
        k = j;
    }
}
```
Binary heap: return (and delete) the maximum

- **Delete max**: Exchange root with node at end. Return it and delete it. Sink the new root down.

- **Cost**: At most $2 \log n$ compares.

```java
public Key delMax() {
    Key max = pq[1];
    exch(1, n--);
    sink(1);
    pq[n+1] = null;
    return max;
}
```
Binary heap: delete and return maximum

```
remove the maximum
T
S
N
E
I
G
P
H
R
O
A

key to remove
exchange key with root
violates heap order
remove node from heap
sink down
```

Putting everything together

- Insert is $O(\log n)$.
- Delete max is $O(\log n)$.
Putting everything together
Lecture 22: Priority Queues

- Priority Queue
- Binary heap
- Heapsort
Basic plan for in-place sort

- View input array as a complete binary tree.
- **Heap construction**: build a max-heap with all n keys.
- **Sortdown**: repeatedly remove the maximum key.
2.4 Heapsort Demo
Heap construction

- **for** (int k = n/2; k >= 1; k--)

 sink(a, k, n);

- **Key insight**: After sink(a, k, n) completes, the subtree rooted at k is a heap.
Sortdown

- Remove the maximum, one at a time, but leave in array instead of nulling out.

```c
while(n>1){
    exch(a, 1, n--);
    sink(a, 1, n);
}
```

- **Key insight**: After each iteration the array consists of a heap-ordered subarray followed by a sub-array in final order.
HEAPSORT

Sortdown

\[\text{while}(n>1) \{ \]
\[\text{exch}(a, 1, n--) ; \]
\[\text{sink}(a, 1, n) ; \]
\[\} \]
Heapsort analysis

- Heap construction makes $O(n)$ exchanges and $O(n)$ compares.
- Heapsort uses $O(n \log n)$ exchanges and compares.
- In-place sorting algorithm with $O(n \log n)$ worst-case!
- Remember:
 - mergesort: not in place, requires linear extra space.
 - quicksort: quadratic time in worst case.
- Heapsort is optimal both for time and space, but:
 - Inner loop longer than quick sort.
 - Poor use of cache.
 - Not stable.
What you need to remember about sorting

<table>
<thead>
<tr>
<th></th>
<th>In place</th>
<th>Stable</th>
<th>Best</th>
<th>Average</th>
<th>Worst</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>X</td>
<td></td>
<td>$\frac{1}{2}n^2$</td>
<td>$\frac{1}{2}n^2$</td>
<td>$\frac{1}{2}n^2$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>Insertion</td>
<td>X</td>
<td>X</td>
<td>n</td>
<td>$\frac{1}{4}n^2$</td>
<td>$\frac{1}{2}n^2$</td>
<td>Use for small arrays or partially ordered</td>
</tr>
<tr>
<td>Merge</td>
<td></td>
<td>X</td>
<td>$\frac{1}{2}n \log n$</td>
<td>$n \log n$</td>
<td>$n \log n$</td>
<td>Guaranteed performance; stable</td>
</tr>
<tr>
<td>Quick</td>
<td>X</td>
<td></td>
<td>$n \log n$</td>
<td>$2n \ln n$</td>
<td>$\frac{1}{2}n^2$</td>
<td>$n \log n$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>Heap</td>
<td>X</td>
<td></td>
<td>$3n$</td>
<td>$2n \log n$</td>
<td>$2n \log n$</td>
<td>$n \log n$ guarantee; in place</td>
</tr>
</tbody>
</table>
Lecture 22: Priority Queues

- Priority Queue
- Binary heap
- Heapsort
Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327), 2.5 (336-344)

- Website:
 - Priority Queues: https://algs4.cs.princeton.edu/24pq/

Practice Problems:

- 2.4.1-2.4.11. Also try some creative problems.