Lecture 21: Array Representation & Heaps

CS 62
Spring 2019
William Devanny & Alexandra Papoutsaki
Array Representation of Binary Trees

Nodes are stored in an array data

- Root at data[0]
- Left subtree of node i in data[2*i+1]
- Right subtree of node i in data[2*i+2]
- Parent of node i in data[(i-1)/2]
Example

index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
data[]: U O R C M E S -- -- -- P T -- -- --
Space usage

Draw different trees and see how much space you’d need for the data array.

A binary tree T with n nodes requires an array whose length is between n (for complete trees) and $2^n - 1$ (for “sticks”).
Binary Heaps

Complete binary trees with one of the following properties

- **Min-heap**: the value of each node is greater or equal to its parent, with the minimum element at the root
- **Max-heap**: the value of each node is smaller or equal to its parent, with the maximum element at the root

When talking about heaps, we will assume min-heaps

Useful when needing to remove object with lowest (or highest priority)

Used to implement priority queues (next lecture)
Alternative definition

Min-Heap H is a complete binary tree s.t.

- H is empty, or
- Both of the following hold:
 - The value in root position is smallest value in H
 - The left and right subtrees of H are also heaps. Equivalent to saying parent is smaller than both its left and right children

- Since complete tree, smallest possible height $O(\log n)$
Examples

Min-heap

Max-heap
VectorHeap (PriorityQueue in Java)

public class VectorHeap<E> {
 protected Vector<E> data;
 public VectorHeap() {
 data = new Vector<E>();
 }
 public VectorHeap(Vector<E> v) {
 int i;
 data = new Vector<E>(v.size);
 for (int i = 0; i < v.size(); i++) {
 add(v.get(i));
 }
 }
 protected static int parent(int i) {
 return (i-1)/2;
 }
 protected static int left(int i) {
 return 2*i+1;
 }
 protected static int right(int i) {
 return 2*(i+1);
 }
}
Insertion

Place node in next available position
“Percolate” (or “bubble” or “sift” or “heapify”) it up
Worst-case: $O(\log n)$
/**
Moves node upward to appropriate position within heap.
* @param leaf Index of the node in the heap.
* @pre 0 <= leaf < size
* @post moves node at index leaf up to appropriate position
*
protected void percolateUp(int leaf) {
 int parent = parent(leaf);
 int current = leaf;
 E value = data.get(current);
 while (current > 0 && (value.compareTo(data.get(parent)) < 0)) {
 data.set(current, data.get(parent));
 current = parent;
 parent = parent(current);
 }
 data.set(current, value);
}
Insert 15

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 40 45 60 32 33 47 -
Insert 15

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 40 45 60 32 33 47

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 40 45 60 32 33 47 15
Insert 15

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 40 45 60 32 33 47 -

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 40 45 60 32 33 47 15

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 15 40 45 60 32 33 47 40
Insert 15

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 40 45 60 32 33 47

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 40 45 60 32 33 47 15

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 15 40 45 60 32 33 47 40
Removal of minimum value

More complicated

Remove top, smallest element

Move last element in array to top so that last node is freed

Since this is a large element need to push down while larger than either child

- Swap with smallest child if larger than it

Worst-case: $O(\log n)$
Remove root

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 15 14 31 20 45 60 32 33 47 40
Remove root

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 15 14 31 20 45 60 32 33 47 40

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 40 15 14 31 20 45 60 32 33 47 40
Remove root

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 10 15 14 31 20 45 60 32 33 47 40

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 40 15 14 31 20 45 60 32 33 47 --

Index: 0 1 2 3 4 5 6 7 8 9 10
data: 14 15 40 31 20 45 60 32 33 47 --
Removal of any node

Similar to removing root node

Exchange with rightmost node of the last level, then delete the rightmost node

If the exchanged node is smaller than its new parent percolate up and if it is larger percolate down

Runtime: $O(n)$ or $O(\log n)$