15: Midterm Review
Lecture 15: Midterm Review

- Logarithms
- Summations
- Simple Loops
- Nested Independent Loops
- Nested Dependent Loops
- Practice Time

Content adopted from Princeton COS226
A refresher

- $a^b = c \rightarrow b = \log_a c$
- $\log_a a = 1$
- $\log_a 1 = 0$
- $\log_a \frac{x}{y} = \log_a x - \log_a y$
- $\log_a (x \times y) = \log_a x + \log_a y$
- $\log_a x^y = y \times \log_a x$
- $\log_a x = \frac{\log_b x}{\log_b a}$
- $x^{\log_a y} = y^{\log_a x}$
- $a^{\log_a x} = x$
- $\log n! \sim n \log n$
Lecture 15: Midterm Review

▸ Logarithms
▸ Summations
▸ Simple Loops
▸ Nested Independent Loops
▸ Nested Dependent Loops
Summation basics

\[\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n \]

\[\sum_{i=1}^{n} c = c + c + \ldots + c = n \times c \]

\[\sum_{i=1}^{n} (c \times f_i) = c \sum_{i=1}^{n} f_i \]

\[\sum_{i=1}^{n} (f_i + g_i) = \sum_{i=1}^{n} f_i + \sum_{i=1}^{n} g_i \]
Useful summations to know

\[\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \]

\[\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \]

\[\sum_{i=0}^{n} r^i = \frac{r^{n+1} - 1}{r - 1}, \ r \neq 1 \]

\[\sum_{i=0}^{n} 2^i = 1 + 2 + 4 + \ldots + 2^n = 2^{n+1} - 1 \]

\[\sum_{i=0}^{n} \left(\frac{1}{2} \right)^i = 1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n} = 2 \]

\[\sum_{i=0}^{n} \left(\frac{1}{i} \right) = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \approx \ln n \]
Lecture 15: Midterm Review

- Logarithms
- Summations
- Simple Loops
- Nested Independent Loops
- Nested Dependent Loops
- Practice Time
Example 1

- `for (int i = 5; i < n + 3; i += 2){
 doSomething();
}

- Called \(\frac{(n + 3 - 5)}{2} = \frac{n - 2}{2}\) times \(\sim O(n)\)
Example 2

```cpp
for (int i = 1; i < n; i*= 2){
    doSomething();
}
```

- Called \(\log n \) times~\(O(\log n) \)
Example 3

- for (int i = 5; i < n + 3; i *= 3) {
 doSomething();
}

- Will call it till $5 \times 3^i \geq n + 3$. Solving for i we get

 $$i = \log_3 \frac{n + 3}{5} \sim O(\log n)$$
Example 4

```java
for (int i = 1; i < n*n*n*n; i *= 3)
{
    doSomething();
}
```

- Called $\log_3 n^4 = 4 \log_3 n$ times $\sim O(\log n)$
Lecture 15: Midterm Review

- Logarithms
- Summations
- Simple Loops
- Nested Independent Loops
- Nested Dependent Loops
- Practice Time
Example 1

```
for (int i = 0; i < n; i++){
    for(int j=0; j<50; j++){
        doSomething();
    }
}
```

- Called $50 \times n$ times ~ $O(n)$
Example 2

- \textbf{for} (int i = 5; i < n; i++){

 for(int j=0; j<n; j+=2){

 doSomething();

 }

}

- Called \((n - 5) \times \frac{n}{2} = \frac{1}{2} (n^2 - 5n)\) times ~ \(O(n^2)\)
Example 3

```java
for (int i = 0; i < n; i++){
    for(int j=1; j<n; j*=2){
        doSomething();
    }
    for(int j=0; j<n; j++){
        doSomething();
    }
}
```

- Called $n \times (\log n + n) = n^2 + n \log n$ times $\sim O(n^2)$
Lecture 15: Midterm Review

- Logarithms
- Summations
- Simple Loops
- Nested Independent Loops
- Nested Dependent Loops
- Practice Time
Example 1

- for (int i = 1; i <= n; i++){
 for(int j=0; j<=i; j++){
 doSomething();
 }
}

- When i = 1, perform 1 inner loop iteration, when i = 2, perform 2 inner loop operations,..., when i = n, perform n inner loop iterations.

- doSomething() is called $1 + 2 + 3 + \ldots + n$ times, that is

$$
\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \sim O(n^2)
$$
NESTED DEPENDENT LOOPS

Example 2

- `for (int i = 1; i <= n; i*=2){
 for(int j=1; j<=i; j++){
 doSomething();
 }
}

- When `i = 1`, perform 1 inner loop iteration, when `i = 2`, perform 2 inner loop operations, when `i=4`, perform 4 inner loop operations, ..., when `i = n=2^x`, perform `n=2^x` inner loop iterations. If we write `n` as a power of 2:

- `doSomething()` is called

\[\sum_{i=0}^{n} 2^i = 1 + 2 + 4 + \ldots + 2^n = 2^{n+1} - 1 \]

- that is

\[\sum_{k=1}^{\log n} 2^k = 2^{\log n + 1} - 1 = 2 \times 2^{\log n} - 1 = 2n - 1 \sim O(n) \]
Example 3

- `for (int i = 1; i <= n; i++){
 for(int j=1; j<i; j*=2){
 doSomething();
 }
}

When i = 1, perform log 1 inner loop iteration, when i = 2, perform log 2 inner loop operations,..., when i=n perform log n inner loop operations.

- `doSomething()` is called

\[
\log_2 (x \times y) = \log_2 x + \log_2 y
\]

\[
\log 1 + \log 2 + \ldots + \log n = \log(1 \times 2 \times \ldots \times n) = \log n! \text{ times}
\]

\[
\sim O(n \log n)
\]
Example 4: The infamous 3-sum brute force algorithm

```java
for (int i = 0; i < n; i++){
    for(int j=i+1; j<n; j++){
        for(int k=j+1; k<n; k++){
            doSomething()
        }
    }
}
```

Called \(\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=j+1}^{n} 1 = \frac{1}{6} n(n^2 - 3n + 2) \) times \(\sim O(n^3) \).

How? [https://www.wolframalpha.com/input/?i=%28sum+sum+sum%29+i%3D1+j%3D1+k%3D1+to+n%29+i%3D1+j%3D1+k%3D1+to+n%29+i%2C+j%2C+k%3D1+to+n] Not expected to figure out something that complicated by hand. You could approximate summations as integrals.
Lecture 15: Midterm Review

- Logarithms
- Summations
- Simple Loops
- Nested Independent Loops
- Nested Dependent Loops
- Practice Time
Example 1

```java
for (int i = n; i > 0; i/= 2) {
    doSomething();
}
```
Example 1 - Answer

- `for (int i = n; i > 0; i/= 2){
 doSomething();
}
`
- Called \(\log n\) times~\(O(\log n)\)
Example 2

```cpp
for (int i = 10; i < n+5; i*=3){
    doSomething();
}
```
Example 2 - Answer

- `for` (int `i` = 10; `i` < `n`+5; `i`*=3){
 doSomething();
}

- Will call it till $10 \times 3^i \geq n + 5$. Solving for `i` we get:

 $i = \log_3 \frac{n + 5}{10} \sim O(\log n)$
Example 3

```java
for (int i = 10; i < n; i++) {
    for (int j = 0; j < n; j += 2) {
        doSomething();
    }
}
```
Example 3 - Answer

- `for (int i = 10; i < n; i++){
 for(int j=0; j<n; j+=2){
 doSomething();
 }
}

Called \((n - 10) \times \frac{n}{2} = \frac{1}{2}(n^2 - 10n)\) times \(\sim O(n^2)\)
Example 4

```java
for (int i = 1; i <= n*n-10; i++){
    for(int j=1; j<=i; j++){
        doSomething();
    }
}
```
Example 4 - Answer

- for (int i = 1; i <= n*n-10; i++){
 for(int j=1; j<=i; j++){
 doSomething();
 }
}

- When i = 1, perform 1 inner loop iteration, when i = 2, perform 2 inner loop operations, ..., when i = n*n-10, perform n*n-10 inner loop iterations.

- doSomething() is called 1 + 2 + 3 + ... + (n^2 - 10) times, that is

\[\sum_{i=1}^{n^2-10} i = \frac{(n^2 - 10) \times ((n^2 - 10) + 1)}{2} \sim O(n^4) \]
Example 5

```java
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i; j++) {
        for (int k = 1; k <= i; k++) {
            doSomething();
        }
    }
}
```
Example 5 - Answer

\[\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \]

- for (int i = 1; i <= n; i++){
 for(int j=1; j<=i; j++){
 for(int k=1; k<=i; k++){
 doSomething();
 }
 }
}
- When i = 1, perform 1x1 inner loop iteration, when i = 2, perform 2x2 inner loop operations, ..., when i = n, perform nxn inner loop iterations.
- doSomething() is called \(1 + 4 + 9 + \ldots + n \times n = 1^2 + 2^2 + 3^2 + \ldots + n^2\) times, that is \(\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6} \sim O(n^3)\)
Lecture 15: Midterm Review

- Logarithms
- Summations
- Simple Loops
- Nested Independent Loops
- Nested Dependent Loops
- Practice Time