CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

13: Analysis of Algorithms

Alexandra Papoutsaki
Mark Kampe

LECTURES
LABS

BASIC DATA STRUCTURES
TODAY’S LECTURE IN A NUTSHELL

Lecture 13: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption

Some slides adopted from Algorithms 4th Edition or COS226
Different Roles

- Programmer: needs a working solution
- Client: Wants an efficient solution
- Theoretician: Wants to understand
Why analyze algorithmic efficiency?

- Predict performance.
- Compare algorithms that solve the same problem.
- Provide guarantees.
- Understand theoretical basis.
- Avoid performance bugs.

Why is my program so slow?
Why does it run out of memory?

We can use a combination of experiments and mathematical modeling.
Lecture 13: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption
3-SUM: Given n distinct numbers, how many unordered triplets sum to 0?

Input: 30 -40 -20 -10 40 0 10 5
Output: 4
 - 30 -40 10
 - 30 -20 -10
 - -40 40 0
 - -10 0 10
EXPERIMENTAL ANALYSIS OF RUNNING TIME

- **3-SUM**: brute-force algorithm

```java
public class ThreeSum {

    public static int count(int[] a) {
        int n = a.length;
        int count = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i+1; j < n; j++) {
                for (int k = j+1; k < n; k++) {
                    if (a[i] + a[j] + a[k] == 0) {
                        count++;
                    }
                }
            }
        }
        return count;
    }

    public static void main(String[] args) {
        int[] a = {30, -40, -20, -10, 40, 0, 10, 5};
        Stopwatch timer = new Stopwatch();
        int count = count(a);
        System.out.println("elapsed time = " + timer.elapsedTime());
        System.out.println(count);
    }
}
```

CODE AND DATA AVAILABLE IN THE ALGS4 WEBSITE
EXPERIMENTAL ANALYSIS OF RUNNING TIME

Empirical Analysis

- Input: 8ints.txt
 - Output: 4 and 0

- Input: 1Kints.txt
 - Output: 70 and 0.081

- Input: 2Kints.txt
 - Output: 528 and 0.38
 - Output: 528 and 0.371

- Input: 4Kints.txt
 - Output: 4039 and 2.792

- Input: 8Kints.txt
 - Output: 32074 and 21.623

- Input: 16Kints.txt
 - Output: 255181 and 177.344

<table>
<thead>
<tr>
<th>Input size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0.081</td>
</tr>
<tr>
<td>2000</td>
<td>0.38</td>
</tr>
<tr>
<td>2000</td>
<td>0.371</td>
</tr>
<tr>
<td>2000</td>
<td>0.371</td>
</tr>
<tr>
<td>4000</td>
<td>2.792</td>
</tr>
<tr>
<td>8000</td>
<td>21.623</td>
</tr>
<tr>
<td>16000</td>
<td>177.344</td>
</tr>
</tbody>
</table>
EXPERIMENTAL ANALYSIS OF RUNNING TIME

- Plots and log-log plots

- Regression: $T(n) = an^b$ (power-law).
- $\log T(n) = b \log n + \log a$, b is slope.
- Experimentally: $\sim 0.42 \times 10^{-10}n^3$, in our example for ThreeSum.
EXPERIMENTAL ANALYSIS OF RUNNING TIME

- Doubling hypothesis

 - Doubling input size increases running time by a factor of \(\frac{T(n)}{T(n/2)} \)

 - Run program doubling the size of input. Estimate factor of growth:
 \[
 \frac{T(n)}{T(n/2)} = \frac{an^b}{a\left(\frac{n}{2}\right)^b} = 2^b.
 \]

 - E.g., in our example, for pair of input sizes 8000 and 16000 the ratio is 8.2, therefore \(b \) is approximately 3.

 - Assuming we know \(b \), we can figure out \(a \).
 - E.g., in our example, \(T(16000) = 177.34 = a \times 16000^3 \).
 - Solving for \(a \) we get \(a = 0.42 \times 10^{-10} \).
EXPERIMENTAL ANALYSIS OF RUNNING TIME

- Practice Time

- Suppose you time your code and you make the following observations. Which function is the closest model of $T(n)$?

A. n^2
B. $6 \times 10^{-4} n$
C. $5 \times 10^{-9} n^2$
D. $7 \times 10^{-9} n^2$

<table>
<thead>
<tr>
<th>Input size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0.0</td>
</tr>
<tr>
<td>4000</td>
<td>0.1</td>
</tr>
<tr>
<td>8000</td>
<td>0.3</td>
</tr>
<tr>
<td>16000</td>
<td>1.3</td>
</tr>
<tr>
<td>32000</td>
<td>5.1</td>
</tr>
</tbody>
</table>
Answer

C. $5 \times 10^{-9}n^2$

Ratio is approximately 4, therefore $b = 2$.

$T(32000) = 5.1 = a \times 32000^2$.

Solving for $a = 4.98 \times 10^{-9}$.

<table>
<thead>
<tr>
<th>Input size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0.0</td>
</tr>
<tr>
<td>4000</td>
<td>0.1</td>
</tr>
<tr>
<td>8000</td>
<td>0.3</td>
</tr>
<tr>
<td>16000</td>
<td>1.3</td>
</tr>
<tr>
<td>32000</td>
<td>5.1</td>
</tr>
</tbody>
</table>
EXPERIMENTAL ANALYSIS OF RUNNING TIME

- Effects on performance

- **System independent effects**: Algorithm + input data
 - Determine b in power law relationships.

- **System independent effects**: Hardware (e.g., CPU, memory, cache) + Software (e.g., compiler, garbage collector) + System (E.g., operating system, network, etc).

- Dependent and independent effects determine a in power law relationships.

- Although it is hard to get precise measurements, experiments in Computer Science are cheap to run.
Lecture 13: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption
MATHEMATICAL MODELS OF RUNNING TIME

Total Running Time

- Popularized by Donald Knuth in the 60s in the four volumes of “The Art of Computer Programming”.
 - Knuth won the Turing Award (The “Nobel” in CS) in 1974.

- In principle, accurate mathematical models for performance of algorithms are available.

- Total running time = sum of cost x frequency for all operations.
- Need to analyze program to determine set of operations.
- Exact cost depends on machine, compiler.
- Frequency depends on algorithm and input data.
MATHEMATICAL MODELS OF RUNNING TIME

- **Cost of basic operations**

- Add < integer multiply < integer divide < floating-point add < floating-point multiply < floating-point divide.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Example</th>
<th>Nanoseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable declaration</td>
<td>int a</td>
<td>c_1</td>
</tr>
<tr>
<td>Assignment statement</td>
<td>$a = b$</td>
<td>c_2</td>
</tr>
<tr>
<td>Integer comparison</td>
<td>$a < b$</td>
<td>c_3</td>
</tr>
<tr>
<td>Array element access</td>
<td>$a[i]$</td>
<td>c_4</td>
</tr>
<tr>
<td>Array length</td>
<td>$a.length$</td>
<td>c_5</td>
</tr>
<tr>
<td>1D array allocation</td>
<td>new int[n]</td>
<td>c_6n</td>
</tr>
<tr>
<td>2D array allocation</td>
<td>new int[n][n]</td>
<td>c_7n^2</td>
</tr>
<tr>
<td>string concatenation</td>
<td>s+t</td>
<td>c_8n</td>
</tr>
</tbody>
</table>
Example: 1-SUM

How many operations as a function of n?

```c
int count = 0;
for (int i = 0; i < n; i++) {
    if (a[i] == 0) {
        count++;
    }
}
```

<table>
<thead>
<tr>
<th>Operation</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable declaration</td>
<td>2</td>
</tr>
<tr>
<td>Assignment</td>
<td>2</td>
</tr>
<tr>
<td>Less than</td>
<td>$n + 1$</td>
</tr>
<tr>
<td>Equal to</td>
<td>n</td>
</tr>
<tr>
<td>Array access</td>
<td>n</td>
</tr>
<tr>
<td>Increment</td>
<td>n to $2n$</td>
</tr>
</tbody>
</table>
Example: 2-SUM

How many operations as a function of n?

```c
int count = 0;
for (int i = 0; i < n; i++) {
    for (int j = i+1; j < n; j++) {
        if (a[i] + a[j] == 0) {
            count++;
        }
    }
}
```

<table>
<thead>
<tr>
<th>Operation</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable declaration</td>
<td>$n + 2$</td>
</tr>
<tr>
<td>Assignment</td>
<td>$n + 2$</td>
</tr>
<tr>
<td>Less than</td>
<td>$\frac{1}{2}(n + 1)(n + 2)$</td>
</tr>
<tr>
<td>Equal to</td>
<td>$\frac{1}{2}n(n - 1)$</td>
</tr>
<tr>
<td>Array access</td>
<td>$n(n - 1)$</td>
</tr>
<tr>
<td>Increment</td>
<td>$\frac{1}{2}n(n + 1)$ to n^2</td>
</tr>
</tbody>
</table>

BECOMING TOO TEDIOUS TO CALCULATE
Tilde notation

- Estimate running time (or memory) as a function of input size n.
- Ignore lower order terms.
 - When n is large, lower order terms become negligible.

Example 1:
$$\frac{1}{6}n^3 + 10n + 100 \sim \frac{1}{6}n^3$$

Example 2:
$$\frac{1}{6}n^3 + 100n^2 + 47 \sim \frac{1}{6}n^3$$

Example 3:
$$\frac{1}{6}n^3 + 100n^\frac{3}{2} + \frac{1/2}{n} \sim \frac{1}{6}n^3$$

- Technically $f(n) \sim g(n)$ means that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$
MATHEMATICAL MODELS OF RUNNING TIME

- **Simplification**

- **Cost model**: Use some basic operation as proxy for running time.
 - E.g., array accesses

- Combine it with tilde notation.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Frequency</th>
<th>Tilde notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable declaration</td>
<td>$n + 2$</td>
<td>$\sim n$</td>
</tr>
<tr>
<td>Assignment</td>
<td>$n + 2$</td>
<td>$\sim n$</td>
</tr>
<tr>
<td>Less than</td>
<td>$1/2(n + 1)(n + 2)$</td>
<td>$\sim 1/2n^2$</td>
</tr>
<tr>
<td>Equal to</td>
<td>$1/2n(n - 1)$</td>
<td>$\sim 1/2n^2$</td>
</tr>
<tr>
<td>Array access</td>
<td>$n(n - 1)$</td>
<td>$\sim n^2$</td>
</tr>
<tr>
<td>Increment</td>
<td>$1/2n(n + 1)$ to n^2</td>
<td>$\sim 1/2n^2$ to $\sim n^2$</td>
</tr>
</tbody>
</table>

- $\sim n^2$ array accesses for the 2-SUM problem
Back to the 3-SUM problem

Approximately how many array accesses as a function of input size \(n \)?

```c
int count = 0;
for (int i = 0; i < n; i++) {
    for (int j = i+1; j < n; j++) {
        for (int k = j+1; k < n; k++) {
            if (a[i] + a[j] + a[k] == 0) {
                count++;
            }
        }
    }
}
```

\[
\binom{n}{3} = \frac{n(n-1)(n-2)}{6} \sim \frac{1}{6} n^3 \quad \text{for each array access}
\]

\[3 \times \frac{1}{6} n^3 = \frac{1}{2} n^3 \quad \text{array accesses.}\]
Useful approximations for the analysis of algorithms

- **Harmonic sum**: $H_n = 1 + 1/2 + 1/3 + \ldots + 1/n \sim \ln n$
- **Triangular sum**: $1 + 2 + 3 + \ldots + n \sim n^2/2$
- **Geometric sum**: $1 + 2 + 4 + 8 + \ldots + n = 2n - 1 \sim 2n$, when n is a power of 2.
- **Binomial coefficients**: $\binom{n}{k} \sim \frac{n^k}{k!}$ when k is a small constant.

- Use a tool like Wolfram alpha.
Practice Time

How many array accesses does the following code make?

```c
int count = 0;
for (int i = 0; i < n; i++) {
    for (int j = i+1; j < n; j++) {
        for (int k = 1; k < n; k=k*2) {
            if (a[i] + a[j] >= a[k]) {
                count++;
            }
        }
    }
}
```

A. $3n^2$
B. $\frac{3}{2}n^2 \log n$
C. $\frac{3}{2}n^3$
D. $3n^3$
MATHEMATICAL MODELS OF RUNNING TIME

- Answer

- $3/2n^2 \log n$
Lecture 13: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption
Order-of-growth

Definition: If \(f(n) \sim c g(n) \) for some constant \(c > 0 \), then the order of growth of \(f(n) \) is \(g(n) \).

- Ignore leading coefficients.
- Ignore lower-order terms.

We will use this definition in the mathematical analysis of the running time of our programs as the coefficients depend on the system.

E.g., the order of growth of the running time of the ThreeSum program is \(n^3 \).
Common order-of-growth classifications

Good news: only a small number of function suffice to describe the order-of-growth of typical algorithms.

- 1: constant
- \(\log n \): logarithmic
- \(n \): linear
- \(n \log n \): linearithmic
- \(n^2 \): quadratic
- \(n^3 \): cubic
- \(2^n \): exponential
- \(n! \): factorial
ORDER OF GROWTH CLASSIFICATION

Common order-of-growth classifications

<table>
<thead>
<tr>
<th>Order-of-growth</th>
<th>Name</th>
<th>Typical code</th>
<th>(T(n)/T(n/2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
<td>(a=b+c)</td>
<td>1</td>
</tr>
<tr>
<td>(\log n)</td>
<td>Logarithmic</td>
<td>while((n>1)){(n=n/2;\ldots}}</td>
<td>(~ 1)</td>
</tr>
<tr>
<td>(n)</td>
<td>Linear</td>
<td>for(int i =0; i<(n);i++){\ldots}</td>
<td>2</td>
</tr>
<tr>
<td>(n \log n)</td>
<td>Linearithmic</td>
<td>mergesort</td>
<td>(~ 2)</td>
</tr>
<tr>
<td>(n^2)</td>
<td>Quadratic</td>
<td>for(int i =0;i<(n);i++){for(int j=0; j<(n);j++){\ldots}}</td>
<td>4</td>
</tr>
<tr>
<td>(n^3)</td>
<td>Cubic</td>
<td>for(int i =0;i<(n);i++){for(int j=0; j<(n);j++){for(int k=0; k<(n); k++){\ldots}}}</td>
<td>8</td>
</tr>
</tbody>
</table>
Lecture 13: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption
ANALYSIS OF MEMORY CONSUMPTION

Basics

- **Bit**: 0 or 1.
- **Byte**: 8 bits.
- **Megabyte (MB)**: 2^{20} bytes.
- **Gigabyte**: 2^{30} bytes.

- We assume that a 64-bit machine has 8-byte pointers.
Typical memory usage for primitives and arrays

- **boolean**: 1 byte
- **byte**: 1 byte
- **char**: 2 bytes
- **int**: 4 bytes
- **float**: 4 bytes
- **long**: 8 bytes
- **double**: 8 bytes

Array overhead: 24 bytes

- **char[]**: $2n+24$
- **int[]**: $4n+24$
- **double[]**: $8n+24$
ANALYSIS OF MEMORY CONSUMPTION

- Typical memory usage for objects

- Object overhead: 16 bytes
- Reference: 8 bytes
- Padding: padded to be a multiple of 8 bytes
- Example:
  ```java
def class Date {
    private int day;
    private int month;
    private int year;
  }
```
 - 16 bytes overhead + 3x4 bytes for ints + 4 bytes padding = 32 bytes
ANALYSIS OF MEMORY CONSUMPTION

- Practice Time

- How much memory does WeightedQuickUnionUF use as a function of n?

```java
public class WeightedQuickUnionUF{
    private int[] parent;
    private int[] size;
    private int count;

    public WeightedQuickUnionUF(int n) {
        parent = new int[n];
        size = new int[n];
        count = 0;
    }
    ...
}
```

A. $\sim 4n$ bytes
B. $\sim 8n$ bytes
C. $\sim 4n^2$ bytes
D. $\sim 8n^2$ bytes
Answer

B. \(\sim 8n \) bytes

- 16 bytes for object overhead
- Each array: 8 bytes for reference + 24 overhead + 4n for integers
- 4 bytes for int
- 4 bytes for padding
- Total \(88 + 8n \sim 8n \)
Lecture 13: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption
Readings:

- Textbook:
 - Chapter 1.4 (pages 172-196, 200-205)

- Website:

Practice Problems:

- 1.4.1-1.4.9