CS 055 Spring 2017 Sample Midterm

Wednesday, March 8th

Question	Score	Points
Propositions		7
Truth tables		5
Proofs		3
Induction		6
Total		21

THIS IS THE KEY

This is the sample midterm, and is not for a grade.
You may use the proof handout I distributed, but nothing else.
Please do not cite previously proven lemmas of any origin (class, book, Internet).

Question 1: Propositions (7 points)

Convert each of the following to a logical proposition. To get full credit, you must convert the proposition all the way, i.e., there should be no English words left in your proposition.
(a) (2 points) The relation $R \subseteq B \times B$ is transitive.
$\forall x y z, x R y \wedge y R z \Rightarrow x R z$
(b) (2 points) The set S is a proper subset of T, i.e., it's contained in but not equal to T.
\qquad
(c) (3 points) There is only one number less than 1 in the naturals.
$\exists!n \in \mathbb{N}, n<1$

Question 2: Truth tables (5 points)
Use a truth table to prove that $\neg(\neg p)$ is equivalent to p.

Solution:

p	$\neg p$	$\neg(\neg p)$
\top	\perp	\top
\perp	\top	\perp

```
1 \mp@code { p t ~ f o r ~ d r a w i n g ~ a ~ t r u t h ~ t a b l e }
1 pt for p
1 pt for neg p
1 pt for neg neg p
1 \mp@code { p t ~ f o r ~ r i g h t ~ a n s w e r }
```

Question 3: Proofs (3 points)
For these multiple-choice questions about proof, you have to identify what (if anything) is wrong with the given proofs. Be careful: some of these proofs may be wrong even though the theorem is true.

Please fill in the circle next your answer. Any other marks will be ignored.
Do not guess. Leaving a question unanswered will be worth half a point, while a wrong answer is worth no points.
(a) (1 point) Theorem: $A \cup B=B$ iff $A \subseteq B$.

Proof: Let sets A and B be given. Suppose $A \cup B=B$; we must show that $A \subseteq B$.
To have $A \cup B=B$, that means that $x \in A \cup B$ iff $x \in B$. We want to show that $A \subseteq B$, i.e., if $x \in A$ then $x \in B$. Suppose we have $x \in A$. We therefore have $x \in A \cup B$; by assumption, we therefore have $x \in B$.
\bigcirc This proof is correct.
This proof is wrong: this property should be proved element-wise.
This proof is wrong: we may not have $x \in A$, since A could be empty.
$\sqrt{ }$ This proof is wrong: it only proves one direction.
\bigcirc This proof is wrong: \cup may not be well defined on A and B.
(b) (1 point) Theorem: $h(n) \leq n$ where we define $h: \mathbb{N} \rightarrow \mathbb{N}$ as follows:

$$
h(n)= \begin{cases}1+h(n-2) & n \geq 2 \\ 0 & n<2\end{cases}
$$

Proof: We go by strong induction on n. Our IH is that $\forall k<n, h(k) \leq k$. By cases on n.
$(n=0)$ We have $h(0)=0 \leq 0$.
($n=n^{\prime}+1$) By cases on n^{\prime}.
($n^{\prime}=0$) We have $n=n^{\prime}+1=0+1=1$, so $h(n)=0 \leq 1$.
$\left(n^{\prime}=n^{\prime \prime}+1\right)$ We have $n=\left(n^{\prime \prime}+1\right)+1$, so $n \geq 2$. We therefore have $h(n)=1+h(n-2)$; by the IH on $n-2$, we know $h(n-2) \leq n-2$, so $1+n-2 \leq n$.

$\sqrt{ }$ This proof is correct.

This proof is wrong: you don't need strong induction.
\bigcirc This proof is wrong: $h(n)$ isn't well defined.
This proof is wrong: the IH can't be used that way.
This proof is wrong: you can't have nested cases in a proof.
(c) (1 point) Theorem: The set \mathbb{Z} is countable.

Proof: We define $f: \mathbb{Z} \rightarrow \mathbb{N}$ as follows:

$$
f(z)= \begin{cases}2 z & z>0 \\ -2 z+1 & z<0\end{cases}
$$

We must show that f is injective. Let z_{1} and z_{2} be given such that $f\left(z_{1}\right)=f\left(z_{2}\right)$; we must show that $z_{1}=z_{2}$. We consider how f treats the z_{i} :
$\left(z_{1}>0, z_{2}>0\right)$ We have $f\left(z_{1}\right)=2 z_{1}$ and $f\left(z_{2}\right)=2 z_{2}$; we must have $z_{1}=z_{2}$.
$\left(z_{1}>0, z_{2}<0\right)$ We have $f\left(z_{1}\right)=2 z_{1}$ and $f\left(z_{2}\right)=-2 z_{2}+1$. Note that the former is even and the latter is odd, so it's a contradiction to have $f\left(z_{1}\right)=f\left(z_{2}\right)$.
$\left(z_{1}<0, z_{2}>0\right)$ We have $f\left(z_{1}\right)=-2 z_{1}+1$ and $f\left(z_{2}\right)=2 z_{2}$. Here the former is odd and the latter is even, so it's a contradiction to have $f\left(z_{1}\right)=f\left(z_{2}\right)$.
$\left(z_{1}<0, z_{2}<0\right)$ We have $f\left(z_{1}\right)=-2 z_{1}+1$ and $f\left(z_{2}\right)=-2 z_{2}+1$; if $-2 z_{1}+1=-2 z_{2}+1$, then it must be that $z_{1}=z_{2}$.This proof is correct.This proof is wrong: you need to use a surjective function to prove countability.
This proof is wrong: the middle two cases aren't actually contradictory.
This proof is wrong: there are more integers than there are natural numbers.
$\sqrt{ }$ This proof is wrong: the function f isn't total.

Question 4: Induction (6 points)

Prove that $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$.

Solution: By induction on n.
$(n=0)$ We have $\sum_{i=0}^{0} i=0=\frac{0 \cdot 1}{2}$.
$\left(n=n^{\prime}+1\right)$ Our IH is $\sum_{i=0}^{n^{\prime}} i=\frac{n^{\prime}\left(n^{\prime}+1\right)}{2}$. We compute:

$$
\begin{align*}
& \sum_{i=0}^{n^{\prime}+1} i \\
= & n^{\prime}+1+\sum_{i=0}^{n^{\prime}} i \\
= & n^{\prime}+1+\frac{n^{\prime}\left(n^{\prime}+1\right)}{n^{\prime 2}} \tag{IH}\\
= & n^{\prime}+1+\frac{n^{\prime}+n^{\prime}}{2} \\
= & \frac{2 n^{\prime}+2}{2}+\frac{n^{\prime 2}+n^{\prime}}{2} \\
= & \frac{n^{\prime 2}+3 n^{\prime}+2}{2} \\
= & \frac{\left(n^{\prime}+1\right)\left(n^{\prime}+2\right)}{2} \\
= & \frac{n(n+1)^{2}}{2}
\end{align*}
$$

```
1 pt for induction
1 ~ p t ~ f o r ~ h a v i n g ~ b o t h ~ c a s e s
1 \mp@code { p t ~ f o r ~ c o r r e c t ~ b a s e ~ c a s e }
1 \text { pt for stating IH}
1 \mp@code { p t ~ f o r ~ c o r r e c t ~ i n d u c t i v e ~ c a s e }
1 \text { pt for overall correctness}
```

