CS 055 Spring 2017 Sample Midterm

Question	Score	Points
Propositions		7
Truth tables		5
Proofs		3
Induction		6
Total		21

Wednesday, March 8th

THIS IS THE KEY

This is the sample midterm, and is not for a grade.

You may use the proof handout I distributed, but nothing else.

Please do not cite previously proven lemmas of any origin (class, book, Internet).

Question 1: Propositions (7 points)

Convert each of the following to a logical proposition. To get full credit, you must convert the proposition *all the way*, i.e., there should be no English words left in your proposition.

(a) (2 points) The relation $R \subseteq B \times B$ is transitive.

 $\forall xyz, \ x \ R \ y \land y \ R \ z \Rightarrow x \ R \ z$

(b) (2 points) The set S is a proper subset of T, i.e., it's contained in but not equal to T.

$S \subsetneq T$

(c) (3 points) There is only one number less than 1 in the naturals.

 $\exists ! n \in \mathbb{N}, n < 1$

Question 2: Truth tables (5 points) Use a truth table to prove that $\neg(\neg p)$ is equivalent to p.

Solution:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
1 pt for drawing a truth tak 1 pt for p 1 pt for neg p 1 pt for neg neg p 1 pt for right answer	ble	

Question 3: Proofs (3 points)

For these multiple-choice questions about proof, you have to identify what (if anything) is wrong with the given proofs. Be careful: some of these proofs may be wrong *even though the theorem is true*.

Please fill in the circle next your answer. Any other marks will be ignored.

Do not guess. Leaving a question unanswered will be worth half a point, while a wrong answer is worth no points.

(a) (1 point) **Theorem:** $A \cup B = B$ iff $A \subseteq B$.

Proof: Let sets A and B be given. Suppose $A \cup B = B$; we must show that $A \subseteq B$. To have $A \cup B = B$, that means that $x \in A \cup B$ iff $x \in B$. We want to show that $A \subseteq B$, i.e., if $x \in A$ then $x \in B$. Suppose we have $x \in A$. We therefore have $x \in A \cup B$; by assumption, we therefore have $x \in B$.

- \bigcirc This proof is correct.
- This proof is wrong: this property should be proved element-wise.
- \bigcirc This proof is wrong: we may not have $x \in A$, since A could be empty.

$\sqrt{}$ This proof is wrong: it only proves one direction.

 \bigcirc This proof is wrong: \cup may not be well defined on A and B.

(b) (1 point) **Theorem:** $h(n) \leq n$ where we define $h : \mathbb{N} \to \mathbb{N}$ as follows:

$$h(n) = \begin{cases} 1 + h(n-2) & n \ge 2\\ 0 & n < 2 \end{cases}$$

Proof: We go by strong induction on n. Our IH is that $\forall k < n, h(k) \le k$. By cases on n. (n = 0) We have $h(0) = 0 \le 0$.

- (n = n' + 1) By cases on n'.
 - (n'=0) We have n = n' + 1 = 0 + 1 = 1, so $h(n) = 0 \le 1$.
 - (n' = n'' + 1) We have n = (n'' + 1) + 1, so $n \ge 2$. We therefore have h(n) = 1 + h(n-2); by the IH on n-2, we know $h(n-2) \le n-2$, so $1 + n 2 \le n$.

$\sqrt{}$ This proof is correct.

- This proof is wrong: you don't need strong induction.
- \bigcirc This proof is wrong: h(n) isn't well defined.
- This proof is wrong: the IH can't be used that way.
- This proof is wrong: you can't have nested cases in a proof.

(c) (1 point) **Theorem:** The set \mathbb{Z} is countable. **Proof:** We define $f : \mathbb{Z} \to \mathbb{N}$ as follows:

$$f(z) = \begin{cases} 2z & z > 0\\ -2z + 1 & z < 0 \end{cases}$$

We must show that f is injective. Let z_1 and z_2 be given such that $f(z_1) = f(z_2)$; we must show that $z_1 = z_2$. We consider how f treats the z_i :

- $(z_1 > 0, z_2 > 0)$ We have $f(z_1) = 2z_1$ and $f(z_2) = 2z_2$; we must have $z_1 = z_2$.
- $(z_1 > 0, z_2 < 0)$ We have $f(z_1) = 2z_1$ and $f(z_2) = -2z_2 + 1$. Note that the former is even and the latter is odd, so it's a contradiction to have $f(z_1) = f(z_2)$.
- $(z_1 < 0, z_2 > 0)$ We have $f(z_1) = -2z_1 + 1$ and $f(z_2) = 2z_2$. Here the former is odd and the latter is even, so it's a contradiction to have $f(z_1) = f(z_2)$.
- $(z_1 < 0, z_2 < 0)$ We have $f(z_1) = -2z_1 + 1$ and $f(z_2) = -2z_2 + 1$; if $-2z_1 + 1 = -2z_2 + 1$, then it must be that $z_1 = z_2$.
 - \bigcirc This proof is correct.
 - This proof is wrong: you need to use a surjective function to prove countability.
 - This proof is wrong: the middle two cases aren't actually contradictory.
 - This proof is wrong: there are more integers than there are natural numbers.
 - $\sqrt{}$ This proof is wrong: the function f isn't total.

Question 4: Induction (6 points) Prove that $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Solution: By induction on n. (n = 0) We have $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.

(n = n'+1) Our IH is $\sum_{i=0}^{n'} i = \frac{n'(n'+1)}{2}$. We compute:

$$\sum_{i=0}^{n'+1} i$$

$$= n'+1+\sum_{i=0}^{n'} i$$

$$= n'+1+\frac{n'(n'+1)}{2} \qquad \text{(IH)}$$

$$= n'+1+\frac{n'^2+n'}{2}$$

$$= \frac{2n'+2}{2}+\frac{n'^2+n'}{2}$$

$$= \frac{n'^2+3n'+2}{2}$$

$$= \frac{(n'+1)(n'+2)}{2}$$

$$= \frac{n(n+1)}{2}$$

1	pt	for	inductio	n
1	pt	for	having b	oth cases
1	pt	for	correct	base case
1	pt	for	stating	IH
1	pt	for	correct	inductive case
1	pt	for	overall	correctness