
Lecture 42:
Wrap-Up & Summary

CS 51G
Spring 2018
Kim Bruce

Announcements

• The final exam is on Wednesday, Dec 14, from 9
to noon.

• Sample Final Exam on exams web page
• No solutions

• Copies of the Objectdraw, File, and GUI cheat
sheets for the exam will be available as needed.

• All Grace but one question on analyzing/
translating Python to Grace.

Final Exam Topics

• Recursion

• Lists & Matrices

• Inheritance

• Using GUI components

• Strings

• Searching and Sorting

• Files & Exceptions

Final Exam Topics

• Explaining Python and/or Python to Grace

• Other materials from earlier in the semester
(but most emphasis on above topics)

• Office hours/review session to be announced
(perhaps Friday afternoon?)

Final Exam
• Time likely won't be an issue, but will likely

find it very challenging. It will require a lot of
studying.

• How to study:
• Understand your own programs

• Understand my sample code

• Work problems from back of text -- solutions on line!.

• When done studying, try final on line

• Studying in groups is effective if all participate

What do you Know?

• Good exposure to object-oriented
programming, but still lots to learn about
design.

• Should find it easy to transition to languages
like Python, Java, C#, Swift

• C and C++ much harder and more complicated.

• CS 54 will teach functional language

• CS 62: Java, CS 105: some C,

Principles

• KISS: Keep It Simple Stupid (US Navy)
• Make everything as simple as possible, but not simpler

• Einstein

• Test every line of code as it is written
• Test-driven development

• Keep public interface of classes as small as
possible so can make changes w/out affecting
others.

Problems Requested

• Exercise 11.1.3

• Exercise 16.7.6. & Question 5 from sample
exam

Anonymous Functions In
Grace

• Expression of form {n: Number -> …} is
anonymous function.
• Object with an apply method:

• {n: Number -> print(n * n)}.apply(7) prints 49

• {…} is parameterless function {x > 0}.apply gives true/false

• Use in for loops
• for(1..10) do {n: Number -> 

 print(n*n)}

• for is a method: method for (e:List⟦T⟧) do (b: Block1D⟦T⟧) 
where Block1C⟦T⟧ has apply function that takes argument of type
T and returns Done.

Add Functionality

• Can add new control structures to Grace
• Add do{…} while {…} method:

• method do{blk:Block1D⟦T⟧} while(cond: Blk0⟦Boolean⟧) → Done { 
 blk.apply 
 while(cond) do (blk)

Questions?

