
Lecture 41: 
Python

CS 51G
Spring 2018
Kim Bruce



Announcements

• Test program 2

• What to review?



Slices

• if x = “abcde” then x[1] is “b”, x[-1] is e, 

• Slices:  x[1:3] is “bc”, x[3:] is “de”, x[:3] is “abc”, 

• Works for lists as well as strings



Tying it all Together!



Dictionaries in Python

• Dictionaries are collections that pair a key with 
a value.

• Example: Phone book pairs name with phone 
number

• Properties of colors are r, g, and b components

• In Python, pairs designated by “:” to join
• Keys are unordered.

• Keys must be immutable!!



More Dictionaries
city_population = {"New York City":8550405,  
    "Los Angeles":3971883, "Toronto":2731571,  
    “Chicago":2720546, "Houston":2296224,  
    "Montreal":1704694, "Calgary":1239220,  
    "Vancouver":631486, "Boston":667137} 

print (city_population["New York City"])  # gives 8550405 
print(city_population)       # comes out in different order 

city_population["Claremont"] = 35000   # add new city 
newDictionary = {}           # create new empty dictionary 



Why Dictionaries

• Like unordered list where look up items by key 
rather than index.

• Useful in lots of applications
• Grace has them as well…



Anonymous Functions

• In GraceL {x:Type -> code to execute}
• Used to add listeners to GUI components

• For loops, etc.

• In Python:  lambda x,y: …x…y…
• Example:  lambda x: x * x

• Must represent expression, no side effects



Anonymous Functions

squaring = lambda x: x * x 
lsquares = list(map(squaring,[1,2,3,4])) 
print (lsquares) 

evenFilter = lambda x: x % 2 == 0 
levens = list(filter(evenFilter, [1,2,3,4])) 
print (levens) 

Results of map and filter are iterators, must cast
to lists



Python vs Grace

• Similar syntax
• Grace requires variable declarations

• rtobjectdraw dialect requires type annotations
• Provides better error messages

• Python has no type annotation

• Blocks in Grace with {}, in Python with :

• Both use lists

• Object-oriented programming more natural in 
Grace



Python vs Grace

• Python easier to write (no types)
• but harder to read (no types)

• & very hard to analyze

• Big asset for Python:
• Great efficient libraries

• In use in lots of contexts.

• Transition from Grace to Java much simpler 
than Python to Java.



Review for Final

• No labs using:
• Inheritance

• Sorting/Searching

• … but they will definitely be on final.



Questions?


