
Lecture 38:
Python

CS 51G
Spring 2018
Kim Bruce

Announcements

• Test program 2
• Academic Honesty Guidelines!

• Quiz Friday (Strings & Streams)

• Lecture Friday will be in lab
• Write searches and sorts in Python

Correction

• Examples from last lecture were run in Python
2 rather than Python 3.

• I’ve gone back and corrected, but only change
was require parentheses around arguments to
print.

• Be aware Python 3 now has two division
operators 6/4 gives 1.5, while 6 // 4 gives 1

List comprehensions

• Recall lab: filterEvensNSquare
• collect even elements and square them

• filterEvensNSquare (list[1,2,3,4,5,6]) = [4,16,36]

In Grace

// returns a list of numbers that consist of the squares of the
// even number in aList

method filterEvensNSquare (aList: List⟦Number⟧) → List ⟦Number⟧ {
 def answer: List⟦Number⟧ = emptyList⟦Number⟧
 for (aList) do {val: Number →
 if ((val % 2) == 0) then {
 answer.add (val * val)
 }
 }
 answer
}

In Python

// returns a list of numbers that consist of the squares of the
// even number in aList

def filterEvensNSquare(aList):
 answer = [] # type: List[int]
 for val in aList:
 print val
 if val % 2 == 0:
 answer.append(val*val)
 return (answer)

List Comprehensions

def squares(aList):
 return [x**2 for x in aList]

def filterEvensNSquare(aList):
 return [x**2 for x in aList if x % 2 == 0]

Grace can do similar things with map method on lists

Imports

• Like Grace, can import functions from external
files
• import math

• must write math.sqrt

• from math import sqrt #specific function
• can use it without writing math.sqrt, just sqrt(16).

• from math import * # import everything
• again, sqrt, cos, sin, all available without prefix

Example

from math import *

x = float(input("Enter a real value:"))
y = sqrt(x)
print (“The square root of", x, "is", y)
print (int(3.7))

• input prompts for input, returns response as a
string

Exceptions

• try-except rather than try-catch

try:
 cost = totalcost / days
except ZeroDivisionError:
 print ("Division by zero error")

Object-Oriented
Programming in Python

• Python has classes, but no object expressions

• Classes have
• separate constructors (named __init__)

• instance variables

• methods

Class Definitions
class myClass(superClass):
 """myClass comment."""
 def __init__(self, otherParams):
 """Initialize object."""
 self.var = exp
 …

 def someMeth(self, otherParams):
 """comment for method."""
 doStuff ….

Class Example
from math import sqrt

class Point():
 """Class representing point on screen"""
 def __init__(self, x, y):
 """weird syntax for constructor"""
 self.x = x
 self.y = y

 def translate(self,dx,dy):
 self.x = self.x + dx
 self.y = self.y + dy

 def distance(self,other):
 return sqrt((self.x - other.x)**2 + (self.y - other.y)**2)

 def __str__(self):
 return "<" + str(self.x) + "," + str(self.y) + ">"

special methods

Example Using Class

p1 = Point(3,4)

print (“p1 = “,p1) # __str__ automagically called

origin = Point(0,0)

print (“distance =“,p1.distance(origin))

origin.translate(6,8)

print (“new origin = ", origin)
print (“p1 = ", p1)

print (“translated distance =“,p1.distance(origin))

Subclass
class ColorPoint(Point):
 """Class representing colored point on screen"""

 def __init__(self, x, y, color):
 super().__init__(x,y)
 self.color = color

 def setColor(self,newColor):
 self.color = newColor

 def __str__(self):
 return (super().__str__() + " with color "
 + self.color)

cp = ColorPoint(2,3,"red")
print (cp)

OO in Python

• Faked

• Ugly when writing methods

• OK when calling from libraries

• Be careful: Python 2 syntax for inheritance very
different from Python 3

Dictionaries in Python

• Dictionaries are collections that pair a key with
a value.

• Example: Phone book pairs name with phone
number

• Properties of colors are r, g, and b components

• In Python, pairs designated by “:” to join
• Keys are unordered.

• Keys must be immutable!!

More Dictionaries
city_population = {"New York City":8550405,  
 "Los Angeles":3971883, "Toronto":2731571,  
 “Chicago":2720546, "Houston":2296224,  
 "Montreal":1704694, "Calgary":1239220,  
 "Vancouver":631486, "Boston":667137}

print (city_population["New York City"]) # gives 8550405
print(city_population) # comes out in different order

city_population["Claremont"] = 35000 # add new city
newDictionary = {} # create new empty dictionary

Why Dictionaries

• Like unordered list where look up items by key
rather than index.

• Useful in lots of applications
• Grace has them as well…

Assignment for class Friday

• Meet in lab

• Learn to use PyCharm
• Write linear and binary search and time them.

Questions?

