
Lecture 38:
Python

CS 51G
Spring 2018
Kim Bruce

Announcements

• Test program 2 now live
• Design due Tuesday, April 24

• It will not be returned before program is due!

• Keep a copy for yourself!

• Due last day of classes

• Quiz Friday (Strings) & Python lab

• Exercise

Python

• Python is designed as a scripting language
• Short programs to glue together calls to powerful

libraries.

• Python is relatively slow compared to
languages like Java, C, C++, etc.
• but has highly optimized libraries written in other

languages.

• Designed by BDFL Guido Van Rossum
• Python 1 (1990), Python 2(2000), Python 3 (2008)

Python Resources

• Python for Java Programmers
• http://python4java.necaiseweb.org

• Think Python 2e (free text) for novices
• http://greenteapress.com/wp/think-python-2e/

Key Points of Python

• Indenting is significant (like Grace)
• use spaces not tabs — don’t mix them!!

• Line breaks are important. Statements extending onto
the next line are problematic. Surround by parens so
Python knows it is a continuation!
• Can also use backslash \ at end to signal next line is continuation

• No curly braces (blocks headed with “:”
instead)

• No type declarations

Running Python

• Use PyCharm CE
• Get from Applications folder and drag to dock

• https://www.jetbrains.com/pycharm-edu/download/

• See on-line documentation

• Can use interactive mode in console or

• Write programs as usual

Getting started

• print “hello world”

• count = 10
• assignment

• count = “countString”
• no type associated with names, can change on fly

• Comments start with #
• x = 0 #assigns value 0 to x

Python programming

• Blocks use “:”
• indentation counts!

i = 10
while i > 0:
 print(i)
 i = i - 1
print "That's it!", i

if i > 0:
 print "oops, terminated too soon!", i
elif i < 0:
 print "terminated too late", i
else:
 print 'terminated just right!', i

Defining functions

Defines a "repeat" function that takes 2 arguments.
def repeat(s, exclaim):
 result = s + s + s
 if exclaim:
 result = result + '!!!'
 return result

def not method
Parameterless functions must have “()”
Must use “return”

Primitive Types
• Numbers: Integers and floating point

• have different results of division

• can convert to other, i.e., float(3), int(3.7) #truncates

• works for strings, too

• Boolean: False, True: not, and, or

• String: “hello” or ‘hello’,
• str(3.7) converts number to string

• list: [0, 2, 4, ”hello”] — heterogeneous

• Tuple (immutable): (1,2,’a’)

Constants/Variables

• Python does not distinguish between constants
and variables. However, by convention, writing
an identifier in all caps says it should not be
changed (though Python will not enforce it).

• Python has no multi-part function names
• All parameters come after the name of the function

Lists

• vowels = [“a”, “e”, “i”, “o”, “u”]

• letterI = vowels[2]

• extendedVowels = vowels + [“y”]
• exW = extendedVowels.append(‘y’)

• Other methods: del, pop, remove, reverse, sort

For Loops

for x in [2,3,5,7,11]:
 print "for",x

for x in range(2,8):
 print "range",x

if x in [2,3,5,7,11]:
 print x, "is in"

Tuples

• Like lists, but immutable:
• triple = (5, True, “heel”)

Strings

• Treated like lists for indexing, slices

• if x = “abcde” then x[1] is “b”, x[-1] is e,  
x[1:3] is “bc”, x[3:] is “de”, x[:3] is “abc”, etc.

• Can also use slices with lists

• Methods: lower, upper, etc. (see
documentation)

Imports

• Like Grace, can import functions from external
files
• from math import sqrt #specific function

• can use it without writing math.sqrt, just sqrt(16).

• from math import * # import everything

Example

from math import *

x = float(raw_input("Enter a real value:"))
y = sqrt(x)
print "The square root of", x, "is", y
print (int(3.7))

• raw_input prompts for input, returns response
as a string

Exceptions

• try-except rather than try-catch

try:
 cost = totalcost / days
except ZeroDivisionError:
 print "Division by zero error"

Object-Oriented
Programming in Python

• Python has classes, but no object expressions

• Classes have
• constructors

• instance variables

• methods

Class Definitions
class myClass(superClass):
 “""myClass comment.”""
 def __init__(self, otherParams):
 """Initialize object."""
 self.var = exp
 …

 def someMeth(self, otherParams):
 “”"comment for method."""
 doStuff ….

Class Example
from math import sqrt

class Point():
 """Class representing point on screen"""
 def __init__(self, x, y):
 """weird syntax for constructor"""
 self.x = x
 self.y = y

 def translate(self,dx,dy):
 self.x = self.x + dx
 self.y = self.y + dy

 def distance(self,other):
 return sqrt((self.x - other.x)**2 + (self.y - other.y)**2)

 def asString(self):
 return "<" + str(self.x) + "," + str(self.y) + ">"

Example Using Class

p1 = Point(3,4)

print "p1 = ",p1.asString()

origin = Point(0,0)

print "distance =",p1.distance(origin)

origin.translate(6,8)

print "new origin = ", origin.asString()
print "p1 = ", p1.asString()

print "translated distance =",p1.distance(origin)

Questions?

