
Lecture 37:
Sorting/Python

CS 51G
Spring 2018
Kim Bruce

Announcements

• Test program 2 now live
• Design due Tuesday, April 24

• It will not be returned before program is due!

• Keep a copy for yourself!

• Due last day of classes

• Apples lab this Friday
• Focus on files and strings

• Exercise 19.3.8

Merge Sort

• Divide list in half,
• Sort first half

• Sort second half

• Merge two sorted halves together

• See sort demo:

• http://www.cs.pomona.edu/classes/cs051G/demos/SearchSort/sort.grace

Complexity of Merge Sort

• Merge two lists of total size n takes ≤ n-1
compares

• Let T(n) = # comparisons to merge sort list of
size n.

• T(0) = T(1) = 0. Why?

• T(n) ≤ T(n/2) + T(n/2) + (n-1)

• Claim: T(n) < n log2 n

QuickSort

• Another divide and conquer sort
• not in sort demo Grace program

• Move all small elements to left side of list, all large
elements on left.

• Sort small and then sort large

• Done!

• Also takes about n log n compares on average
• Though worst case is roughly n2.

• Happens when list already sorted in either direction

Which sort when?

• Short lists (50 or fewer elements):
• Selection sort or insertion sort are faster.

• If partially sorted, insertion can be much faster than
selection

• Long lists (50 or more)
• QuickSort is fastest on average

• But worst case is worse than selection/insertion

• Merge sort always roughly n log n, so better if can’t
afford long delays.

• Merge sort takes more space (extra list of size n)

Python

Python

• Python is designed as a scripting language
• Short programs to glue together calls to powerful

libraries.

• Python is relatively slow compared to
languages like Java, C, C++, etc.
• but has highly optimized libraries written in other

languages.

• Designed by BDFL Guido Van Rossum
• Python 1 (1990), Python 2(2000), Python 3 (2008

Python Resources

• Python for Java Programmers
• http://python4java.necaiseweb.org

• Think Python 2e (free text) for novices
• http://greenteapress.com/wp/think-python-2e/

Key Points of Python

• Indenting is significant (like Grace)
• use spaces not tabs — don’t mix them!!

• Line breaks are important. Statements extending onto
the next line are problematic. Surround by parens so
Python knows it is a continuation!
• Can also use backslash \ at end to signal next line is continuation

• No curly braces (blocks headed with “:”
instead)

• No type declarations

Running Python

• Use PyCharm CE
• Get from Applications folder and drag to dock

• https://www.jetbrains.com/pycharm-edu/download/

• See on-line documentation

• Can use interactive mode in console or

• Write programs as usual

Getting started

• print (“hello world”)
• parentheses are required!

• count = 10
• assignment

• count = “countString”
• no type associated with names, can change on fly

• Comments start with #
• x = 0 #assigns value 0 to x

Python programming

• Blocks use “:”
• indentation counts!

i = 10
while i > 0:
 print(i)
 i = i - 1
print "That's it!", i

if i > 0:
 print "oops, terminated too soon!", i
elif i < 0:
 print "terminated too late", i
else:
 print 'terminated just right!', i

Defining functions

Defines a "repeat" function that takes 2 arguments.
def repeat(s, exclaim):
 result = s + s + s
 if exclaim:
 result = result + '!!!'
 return result

Primitive Types

• Numbers: Integers and floating point
• different kinds of division

• Boolean: False, True

• String: “hello” or ‘hello’

• list: [0, 2, 4, ”hello”] — heterogeneous

• Tuple (immutable): (1,2,’a’)

Questions?

