Lecture 37:
Sorting/Python

CS 51G
Spring 2018
Kim Bruce



Announcements

* Test program 2 now live

e Design due Tuesday, April 24
e It will not be returned before program is due!

e Keep a copy for yourself!

e Due last day of classes

o Apples lab this Friday

e Focus on files and strings

e Exercise 19.3.8



Merge Sort

e Divide list in half,
e Sort first half
e Sort second half
e Merge two sorted halves together

e See sort demo:

e http://www.cs.pomona.edu/classes/csos1GG/demos/SearchSort/sort.grace




Complexity of Merge Sort

e Merge two lists of total size n takes < n-1
compares

e Let T(n) = # comparisons to merge sort list of
size n.

e T(0) =T() = 0. Why?
e T(n) < T(n/2) + T(n/2) + (n-1)
e Claim: T(n) < n log, n



QuickSort

e Another divide and conquer sort

not in sort demo Grace program

Move all small elements to left side of list, all large
elements on left.

Sort small and then sort large
Done!

Also takes about n log n compares on average

e Though worst case is roughly n=.

e Happens when list already sorted in either direction



Which sort when?

e Short lists (50 or fewer elements):
e Selection sort or insertion sort are faster.
e If partially sorted, insertion can be much faster than
selection
* Long lists (50 or more)

e QuickSort is fastest on average

e But worst case is worse than selection/insertion

e Merge sort always roughly n log n, so better if can’t

afford long delays.

e Merge sort takes more space (extra list of size n)



Python



Python

e Python is designed as a scripting language

e Short programs to glue together calls to powerful
libraries.

e Python is relatively slow compared to
languages like Java, C, C++, etc.

e but has highly optimized libraries written in other

languages.

e Designed by BDFL Guido Van Rossum
e Python 1 (1990), Python 2(2000), Python 3 (2008



Python Resources

* Python for Java Programmers

e http://pythongjava.necaiseweb.org

e Think Python 2e (free text) for novices

e http://greenteapress.com/wp/think-pvthon-2e/




Key Points of Python

 Indenting is significant (like Grace)
e use spaces not tabs — don’t mix them!!

e Line breaks are important. Statements extending onto
the next line are problematic. Surround by parens so
Python knows it is a continuation!

e C(Can also use backslash \ at end to signal next line is continuation

e No curly braces (blocks headed with “:”
instead)

* No type declarations



Running Python

e Use PyCharm CE
e Get from Applications folder and drag to dock

e https://www.jetbrains.com/pycharm-edu/download/

e See on-line documentation
e (Can use interactive mode in console or

e Write programs as usual



GGetting started

e print (“hello world”)

e parentheses are required!

¢ count =10

* assignment

e count = “countString”

* no type associated with names, can change on fly

e Comments start with #

e X =0 #assigns value o to x



Python programming

€« ”

e Blocks use “:

e indentation counts!

1 =10

while i > 0:
print(i)
1=1-1

print "That's it!", i

if 1 > 0:

print "oops, terminated too soon!", i
elif i < 0:

print "terminated too late", i
else:

print 'terminated just right!', i



Defining functions

# Defines a "repeat" function that takes 2 arguments.
def repeat(s, exclaim):
result = s + s + s
if exclaim:
result = result + "!t!!
return result



Primitive lypes

e Numbers: Integers and floating point

e different kinds of division

e Boolean: False, True
e String: “hello” or ‘hello’

e list: {0, 2, 4, "hello”} — heterogeneous

e Tuple (immutable): (1,2,’a’)



(Questions?



