
Lecture 36:
More Sorting

CS 51G
Spring 2018
Kim Bruce

Announcements

• Test program 2 now live
• Design due Tuesday, April 24

• It will not be returned before program is due!

• Keep a copy for yourself!

• Due last day of classes

• Apples lab this Friday
• Focus on files and strings

• Exercise 19.6.3

Sorting

• Many kinds
• Simple sorts: insertion, selection

• take roughly n2/2 comparisons to sort n elements

• More complex sorts: merge, quick sort
• take roughly n log n comparisons to sort n elements

Last time!

Selection Sort

• Expressed recursively:

• Find smallest element of list and swap with
first element of list.

• Sort the rest of the list in place

• Example:
• [9,7,3,1,6,4] => [1,7,3,9,6,4] => … => [1,3,4,6,7,9]

• http://www.cs.pomona.edu/classes/cs051G/demos/SearchSort/sort.grace

Complexity of Selection Sort

• Count number of comparisons in selection
sort:
• (n-1) + (n-2) + … + 2 + 1 = n(n-1)/2 ≈ n2 / 2

Insertion Sort
• Alternative simple sort: Insertion sort

• To sort a list of size n
• ask assistant to sort last n-1 elements

• you put the (original) first element where it belongs in list

• Iteratively:
• Put first two in order

• Insert third where belongs in first two

• Insert fourth where it belongs in first three

• …

• Worst case comparisons: 1 + 2 +3 + … + (n-1) = n(n-1)/2 ≈
n2 / 2

• On average twice as fast as selection sort.

Merge Sort

• Divide list in half,
• Sort first half

• Sort second half

• Merge two sorted halves together

• See sort demo:

• http://www.cs.pomona.edu/classes/cs051G/demos/SearchSort/sort.grace

Complexity of Merge Sort

• Merge two lists of total size n takes ≤ n-1
compares

• Let T(n) = # comparisons to merge sort list of
size n.

• T(0) = T(1) = 0. Why?

• T(n) ≤ T(n/2) + T(n/2) + (n-1)

• Claim: T(n) < n log2 n

QuickSort

• Another divide and conquer sort
• not in sort Grace program

• Move all small elements to left side of list, all large
elements on left.

• Sort small and then sort large

• Done!

• Also takes about n log n compares on average
• Though worst case is roughly n2.

• Happens when list already sorted in either direction

Which sort when?

• Short lists (50 or fewer elements):
• Selection sort or insertion sort are faster.

• If partially sorted, insertion can be much faster than
selection

• Long lists (50 or more)
• QuickSort is fastest on average

• But worst case is worse than selection/insertion

• Merge sort always roughly n log n, so better if can’t
afford long delays.

• Merge sort takes more space (extra list of size n)

Next time: Python

Questions?

