Lecture 36:
More Sorting

CS 51G
Spring 2018
Kim Bruce




Announcements

* Test program 2 now live

e Design due Tuesday, April 24
e It will not be returned before program is due!

e Keep a copy for yourself!

e Due last day of classes

o Apples lab this Friday

e Focus on files and strings

e Exercise 19.6.3



Sorting

e Many kinds Last time!
/

e Simple sorts: insertion, selectzon

e take roughly n2/2 comparisons to sort n elements

e More complex sorts: merge, quick sort

e take roughly n log n comparisons to sort n elements



Selection Sort

* Expressed recursively:

* Find smallest element of list and swap with
first element of list.

* Sort the rest of the list in place

e Example:

¢ {99793317634] => {177)399:694} => .. =2 {Ia374)6a7)9]

e http://www.cs.pomona.edu/classes/cso51GG/demos/SearchSort/sort.grace



Complexity of Selection Sort

e Count number of comparisons in selection
sort:

e (nD+M2)+..+2+1=n(n1)/2~n2/2



Insertion Sort

* Alternative simple sort: Insertion sort

e To sort a list of size n
e ask assistant to sort last n-1 elements

e you put the (original) first element where it belongs in list

e Iteratively:
e Put first two in order
e Insert third where belongs in first two

e Insert fourth where it belongs in first three

e Worst case comparisons: I +2 +3 + ... + (n-1) = n(n-1)/2 =
nz/2

e On average twice as fast as selection sort.



Merge Sort

e Divide list in half,
e Sort first half
e Sort second half
e Merge two sorted halves together

e See sort demo:

e http://www.cs.pomona.edu/classes/csos1GG/demos/SearchSort/sort.grace




Complexity of Merge Sort

e Merge two lists of total size n takes < n-1
compares

e Let T(n) = # comparisons to merge sort list of
size n.

e T(0) =T() = 0. Why?
e T(n) < T(n/2) + T(n/2) + (n-1)
e Claim: T(n) < n log, n



QuickSort

e Another divide and conquer sort

not in sort (Grace program

Move all small elements to left side of list, all large
elements on left.

Sort small and then sort large
Done!

Also takes about n log n compares on average

e Though worst case is roughly n=.

e Happens when list already sorted in either direction



Which sort when?

e Short lists (50 or fewer elements):
e Selection sort or insertion sort are faster.
e If partially sorted, insertion can be much faster than
selection
* Long lists (50 or more)

e QuickSort is fastest on average

e But worst case is worse than selection/insertion

e Merge sort always roughly n log n, so better if can’t

afford long delays.

e Merge sort takes more space (extra list of size n)



Next time: Python



(Questions?



