# Lecture 35: <br> Searching \& Sorting <br> CS 5iG <br> Spring 2018 <br> Kim Bruce 

## Announcements

- Test program 2 now live
- Design due Tuesday, April 24
- It will not be returned before program is due!
- Keep a copy for yourself!
- Due last day of classes
- Regular lab this Friday
- But following week's lab devoted to test program


## Searching

- Iterative vs Recursive
- Linear vs Binary.
- Binary requires list be sorted!
- How many comparisons does it take to find an element?
- http://www.cs.pomona.edu/classes/cso $2 \mathrm{IG} /$ demos/SearchSort/search.grace


## Timing

Linear search: n comparison in worst case Binary search: $\log \mathrm{n}$ comparisons in worst case

| $\operatorname{search/n}$ | 10 | 100 | 1000 | $1,000,000$ |
| :---: | :---: | :---: | :---: | :---: |
| linear(n) | 1о | 100 | 1000 | 1,000, <br> 000 |
| Binary <br> $(\log n)$ | 4 | 7 | 10 | 20 |

## Sorting

- Many kinds
- Simple sorts: insertion, selection
- take roughly $\mathrm{n}^{2} / 2$ comparisons to sort n elements
- More complex sorts: merge, quick sort
- take roughly $\mathrm{n} \log \mathrm{n}$ comparisons to sort n elements


## Selection Sort

- Expressed recursively:
- Find smallest element of list and swap with first element of list.
- Sort the rest of the list in place
- Example:
- $[9,7,3, \mathrm{I}, 6,4]=>[\mathrm{r}, 7,3,9,6,4]=>\ldots=>[\mathrm{r}, 3,4,6,7,9]$
- http://www.cs.pomona.edu/classes/csosiG/demos/SearchSort/sort.grace


## Complexity of Selection Sort

- Count number of comparisons in selection sort:
- $(\mathrm{n}-\mathrm{I})+(\mathrm{n}-2)+\ldots+2+\mathrm{I}=\mathrm{n}(\mathrm{n}-\mathrm{I}) / 2 \approx \mathrm{n}^{2} / 2$


## Insertion Sort

- Alternative simple sort: Insertion sort
- To sort a list of size $n$
- ask assistant to sort last n-ı elements
- you put the (original) first element where it belongs in list
- Iteratively:
- Put first two in order
- Insert third where belongs in first two
- Insert fourth where it belongs in first three
- Comparisons: $\mathrm{I}+2+3+\ldots+(\mathrm{n}-\mathrm{I})=\mathrm{n}(\mathrm{n}-\mathrm{I}) / 2 \approx \mathrm{n}^{2} / 2$
- On average twice as fast as selection sort.


## Questions?

