
Lecture 35: 
Searching & Sorting

CS 51G
Spring 2018
Kim Bruce



Announcements

• Test program 2 now live
• Design due Tuesday, April 24

• It will not be returned before program is due! 

• Keep a copy for yourself!

• Due last day of classes

• Regular lab this Friday
• But following week’s lab devoted to test program



Searching

• Iterative vs Recursive

• Linear vs Binary.
• Binary requires list be sorted!

• How many comparisons does it take to find an 
element?

• http://www.cs.pomona.edu/classes/cs051G/demos/SearchSort/search.grace



Timing

search/n 10 100 1000 1,000,000

linear(n) 10 100 1000 1,000,
000

Binary
(log n) 4 7 10 20

Linear search: n comparison in worst case
Binary search: log n comparisons in worst case



Sorting

• Many kinds
• Simple sorts: insertion, selection 

• take roughly n2/2 comparisons to sort n elements

• More complex sorts: merge, quick sort
• take roughly n log n comparisons to sort n elements



Selection Sort

• Expressed recursively:

• Find smallest element of list and swap with 
first element of list.

• Sort the rest of the list in place

• Example:
• [9,7,3,1,6,4] => [1,7,3,9,6,4] => … => [1,3,4,6,7,9]

• http://www.cs.pomona.edu/classes/cs051G/demos/SearchSort/sort.grace



Complexity of Selection Sort

• Count number of comparisons in selection 
sort:
• (n-1) + (n-2) + … + 2 + 1 = n(n-1)/2 ≈ n2 / 2



Insertion Sort

• Alternative simple sort: Insertion sort
• To sort a list of size n

• ask assistant to sort last n-1 elements

• you put the (original) first element where it belongs in list

• Iteratively:
• Put first two in order

• Insert third where belongs in first two

• Insert fourth where it belongs in first three

• …

• Comparisons: 1 + 2 +3 + … + (n-1) = n(n-1)/2 ≈ n2 / 2

• On average twice as fast as selection sort.



Questions?


