
Lecture 30:
Exceptions

CS 51G
Spring 2018
Kim Bruce

Announcements

• Exercise 15.5.3

• Simon lab Friday

• Courses for next year
• CS 52 & 55 vs 54

• For most, CS 54 should be best choice

Strings are Lists!
• … but immutable. Can get individual elements

via at(i)

• Can also iterate through characters in string
• Does a string represent a number?

method isInteger(word:String) -> Boolean {
 for(word) do {letter: String ->
 if (("0" > letter) || (letter > "9")) then {
 return false 
 }
 }  
 true 
}

Strings are ordered

• <, <=, >, >=, ==, and != work as expected
(alphabetical order).

• ord gives numeric code of first letter of string

Exceptions

Exceptional Conditions

• What do you do when something goes wrong?
• Try to handle nicely within code. Sometimes that’s not

possible and have to give up current computation.

• Language construct to catch run-time errors

try {
 stuff to try
 } catch{ ex: SomeExceptionType ->
 // stuff to do if exception occurs
}

Example from Objectdraw
def ColorOutOfRange: prelude.ExceptionKind is public =
 prelude.ProgrammingError.refine “ColorOutOfRange"

def colorGen is public = object {
 class r (r': Number) g (g': Number) b (b': Number) -> Color {
 // Creates a color with rgb coordinates r', g', and b'
 if ((r' < 0) || (r' > 255)) then {
 ColorOutOfRange.raise "red index {r'} out of bounds 0..255"
 }

 if ((g' < 0) || (g' > 255)) then {
 ColorOutOfRange.raise "green index {g'} out of bounds 0..255"
 }

 if ((b' < 0) || (b' > 255)) then {
 ColorOutOfRange.raise "blue index {b'} out of bounds 0..255"
 }

ColorGen continued
 def red:Number is public = r'.truncated
 def green:Number is public = g'.truncated
 def blue:Number is public = b'.truncated

 method == (c: Color) -> Boolean {
 (red == c.red) && (green == c.green) && (blue == c.blue)
 }

 method asString -> String {
 "color w/ rgb({red}, {green}, {blue})"
 }
 }

 method random -> Color {
 // Produce a random color.
 r (randomIntFrom (0) to (255))
 g (randomIntFrom (0) to (255))
 b (randomIntFrom (0) to (255))
 }

ColorGen continued

 def white:Color is public = r (255) g (255) b (255)
 def black:Color is public = r (0) g (0) b (0)
 def green:Color is public = r (0) g (255) b (0)
 def red:Color is public = r (255) g (0) b (0)
 def gray:Color is public = r (60) g (60) b (60)
 def blue:Color is public = r (0) g (0) b (255)
 def cyan:Color is public = r (0) g (255) b (255)
 def magenta:Color is public = r (255) g (0) b (255)
 def yellow:Color is public = r (255) g (255) b (0)
 def neutral:Color is public = r (220) g (220) b (220)
}

Using the Exception
 method changeColor -> Done {
 var newColor: Color
 try {
 newColor := color.r(redField.number)
 g(greenField.number)
 b(blueField.number)
 } catch {
 ex: ColorOutOfRange ->
 print "Enter values between 0 and 255 for colors"
 newColor := black
 }
 background.color := newColor
 }

Using Parameter ex
• Here are some of its methods:

• exception → exceptionKind answers the exceptionKind
of this exception.

• message → String the message that was provided when
this exaction was raised.

• data → Object answers the data object that was
associated with this exception when it was raised, if
there was one. Otherwise, answers the string “no data”.

• lineNumber → Number the source code line number of
the request of raise that created this exception.

• backtrace → List<String> a list of strings describing the
call stack at the time that this exception was raised.
backtrace.first is the initial execution environment;
backtrace.last is the context that raised the exception.  

Another Example

def myList:List⟦Number⟧ = list⟦Number⟧ [5,7,9]
var index := 1
try {

while {index < 7} do {
 print(myList.at(index))
 index := index + 1  

 }
} catch {ex: BoundsError ->

print "went too far!"
print ("on line {ex.lineNumber} of {ex.moduleName}, {ex.message}")
print "\n\nBacktrace: {ex.backtrace}" 

}

Questions?

