
Lecture 22:
For Loops

CS 51G
Spring 2018
Kim Bruce

Test Programs

• Questions on Test Programs

Towers of Hanoi

• 3 diamond-tipped needles

• 64 golden disks to move
• Start on needle one with lower disks larger than upper

• Move to needle three

• But can’t put big disk on smaller disk

• Can use 2nd needle to help

• How many moves?
• http://www.cs.pomona.edu/classes/cs051G/demos/Hanoi/Hanoi.grace

For loops

• Many while loops similar:
 var stripeStart: Point := point
 var stripeNum: Number := 1
 while{stripeNum <= n} do {
 def redStripe:Graphic2D = filledRect.at (stripeStart)
 size (width @ stripeHeight) on (canvas)
 redStripe.color := red
 stripeStart := stripeStart + (0@(2 * stripeHeight))
 stripeNum := stripeNum + 1
}

Easy to forget some of pieces — want to automate it!

For loops

• Many while loops similar:
 var stripeStart: Point := point
 for (1.. n) do { stripeNum: Number →
 def redStripe:Graphic2D = filledRect.at (stripeStart)
 size (width @ stripeHeight) on (canvas)
 redStripe.color := red
 stripeStart := stripeStart + (0@(2 * stripeHeight))
}

Three lines compressed to one!
Simpler if do loop for fixed number of times

 (1.. n) is called a “range”

Other Examples

• Knitting again:
• http://www.cs.pomona.edu/classes/cs051G/demos/KnittingFor/KnittingFor.grace

• Interest:
• http://www.cs.pomona.edu/classes/cs051G/demos/InterestingFor/InterestingFor.grace

• Called a range: (m .. n)
• (2 .. 9).reversed gives range in reverse order

Other Loops

• repeat (n) times { body }
• Could have used in flag & knitting

• do { body } while { cond }
• Test after execute body of loop

Lists

• Another way to hold collections of objects
• More restricted than recursion as kept as collection

indexed by number, e.g., has first, second, third, etc.

• Often easier to use than recursion

• Must say what kind of element held in list:
• var scores: List[[Number]]

• var names: List [[String]]

• var pictures: List [[Graphic2D]]

Creating Lists

• Creating lists of strings:
• var start: List[[String]] := emptyList[[String]]

• var vowels: List[[String]] := list[[String]] [“a”,”e”,”i”,”o”,”u”]

• Can also create from ranges:
• var scores: List[[Number]] := list[[Number]] (1..100)

Accessing Elements

• Example:
• var vowels: List[[String]] := list[[String]] [“a”,”e”,”i”,”o”,”u”]

• def first: String = vowels.at(1)

• def last: String = vowels.at(5)

• Can use in for loops:
• for (vowels) do {letter: String ->  

 print (letter) 
}

Questions?

