
Lecture 18:
Recursion

CS 51G
Spring 2018
Kim Bruce

Test Programs

• Test programs 2 and 3 available now!

• No coverage of GUI components
• Dragging and interacting w/objects

• Designing classes

• Animations

Midterm

• Friday in class: 50 minutes

• Coverage: Chapters 1-9, 20.

Recursion

• Explain things naturally

• How to draw a target
• If small enough, just draw bullseye

• Otherwise draw outer ring and then draw smaller target
inside

• Can write programs like that!
• http://www.cs.pomona.edu/classes/cs051G/demos/TargetApp/TargetApp.grace

Creating Recursive Objects

1. Create a type with all methods necessary

2. Define an object(s) representing the simplest
(base) cases.

3. Define the recursive case
1. has an instance variable/def of same type, but simpler.
2. Write initialization assuming initialization of simpler

part is correct.
4. Write methods under assumption it works correctly for all

simpler objects.

Examples

• Scribble that can be moved
• http://www.cs.pomona.edu/classes/cs051G/demos/SingleScribble/

• Chain reaction
• http://www.cs.pomona.edu/classes/cs051G/demos/ChainReaction/ChainReaction.grace

• Broccoli
• http://www.cs.pomona.edu/classes/cs051G/demos/Broccoli/

Recursive Methods

• Can have recursion on methods where it is just
parameters that get simpler. Assume exponent
is integer (or won’t stop!!)

method simpleRecPower (base: Number, exponent: Number)
 -> Number {
 if (exponent == 0) then {
 1
 } else {
 base * simpleRecPower (base, exponent - 1)
 }
}

Call with simpler (smaller) exponent!

More Power

• Can find even faster if use divide-and-conquer
technique based on:
• b0 = 1

• bn+1 = b * bn

• (bn)m = bn*m

• http://www.cs.pomona.edu/classes/cs051G/demos/Powers/

Questions?

