Lecture 18: Recursion

CS 51G Spring 2018 Kim Bruce

Test Programs

- Test programs 2 and 3 available now!
- No coverage of GUI components
 - Dragging and interacting w/objects
 - Designing classes
 - Animations

Midterm

- Friday in class: 50 minutes
- Coverage: Chapters 1-9, 20.

Recursion

- Explain things naturally
- How to draw a target
 - If small enough, just draw bullseye
 - Otherwise draw outer ring and then draw smaller target inside
- Can write programs like that!
 - <u>http://www.cs.pomona.edu/classes/cso51G/demos/TargetApp/TargetApp.grace</u>

Creating Recursive Objects

- I. Create a type with all methods necessary
- Define an object(s) representing the simplest (base) cases.
- 3. Define the recursive case
 - 1. has an instance variable/def of same type, but simpler.
 - 2. Write initialization assuming initialization of simpler part is correct.
- 4. Write methods under assumption it works correctly for all simpler objects.

Examples

- Scribble that can be moved
 - http://www.cs.pomona.edu/classes/cso51G/demos/SingleScribble/
- Chain reaction
 - <u>http://www.cs.pomona.edu/classes/cs051G/demos/ChainReaction/ChainReaction.grace</u>
- Broccoli
 - http://www.cs.pomona.edu/classes/cso51G/demos/Broccoli/

Recursive Methods

• Can have recursion on methods where it is just parameters that get simpler. Assume exponent is integer (or won't stop!!)

Call with simpler (smaller) exponent!

More Power

- Can find even faster if use divide-and-conquer technique based on:
 - b° = I
 - $b^{n+1} = b * b^n$
 - $(b^n)^m = b^{n^*m}$
 - http://www.cs.pomona.edu/classes/cso51G/demos/Powers/

