
Lecture 1:
Fundamentals & Graphics

CS 51G
Spring 2018
Kim Bruce

TAs: Alejandro Salvador, Joe Brennan, & Cleo Forman
Course web page: http://www.cs.pomona.edu/classes/cs051G

Who we are:

Cleo Forman Joe Brennan Alejandro Salvador

Kim Bruce

Read syllabus
On-line more complete

and up-to-date
1st lab Friday

Course Description

• Object-oriented programming in Grace
• New language designed for teaching novices.

• 4th offering using Grace
• More expressive, fewer confusing parts than Java, C++, etc.

• Use locally-written library to explore graphic
applications, animations, event-driven
programming
• Fun programming projects

• Serious skills in solving practical problems

Why 51G (Grace) over 51J
(Java)?

• Grace has simpler syntax and semantics

• Same material (and projects), but fewer unnecessary
complications in Grace
• How learn to fly stealth bomber (or any complex skill)?

• Preliminary studies show students do better when
learning Grace.

• Text in Grace is free, text in Java is ~$150 new.

• Will learn Java anyway in CS 62

• Students learn more in smaller classes
• Max of 20 students in 51G

Why Java over Grace?
• You feel professor is not being paid enough and deserves

the $5 profit earned for every new Java book sold.

• You think the prof in 51J is better than 51G professor.

• You believe doing things the hard way builds character.

• You think it would be cooler to learn a language designed
23 years ago rather than one designed in the last 5 years.

• It's absolutely necessary for you to learn Java as quickly
as possible even if learn less well.

• You feel that learning Java syntax now will give you a leg
up when learning Java in CS 62.

• You don't think you can possibly get up for a 9 a.m. class!

Languages In Use

• If want to program
• Mac or iOS: Objective C or Swift

• Windows: C#

• Android: Java

• Web: Javascript, php, or Dart

• Systems: C, C++, Rust, or Go

• Scientific Programming: Fortran, C, Python, Matlab, R,
or …?

Is this course for you?

• Intended for student with no or little
programming experience
• If took AP CS then over-qualified.

• Take 52 or 54

• Talk to me if not sure

Labs

• Weekly labs (required!)
• Start w/quiz (not this week)

• Work on weekly homework, due Monday night at 11 p.m.

• Most learning takes place in labs.
• Lectures focused on helping learning ideas used in lab

• Two times during semester can turn in lab 1 day late
• Save for emergencies. No other extensions unless prolonged illness

• Test programs before spring break and final
• Count 20% of grade each. (Midterm exam 15%, final exam 25%)

How to Succeed

• Read lightly sections to be covered before class
• Don’t need to understand it all, but get questions

• Annotate printed notes in class

• Afterwards read sections carefully, work out
problems at end of chapters & on syllabus
• Focus in class on examples, not details of syntax.

Academic Honesty

• Has been problem in CS 51 in past
• Easy to catch. Don’t do it!

• See statement on syllabus!

• Close to half of labs will be in pairs.

• Ask instructors and mentors for help!

Algorithms

• Set of instructions to solve general problem

• Humans good at carrying out bad commands
• Computers are stupid, too literal!

• Learning chess
• Is learning how pieces move enough?

• How do you become good at it?

Writing Grace Programs

• Use Chrome web browser
• http://www.cs.pomona.edu/~kim/minigrace/

• Write in editor pane.

• When push run, compiles into javascript & executes

• First program:
• MakeBox:  

http://www.cs.pomona.edu/classes/cs051G/demos/MakeBox/MakeBox.grace

MakeBox Program
dialect “rtobjectdraw”
object {
 inherit graphicApplicationSize(400 @ 400)

 windowTitle := "Hello World Program!"

 …

 startGraphics
}

Ready window of size 400 by 400

set title bar

Show the window

Do something interesting!

Set dialect to use graphics library

Computer Graphics

x

y

Origin in upper-left
corner of screen

y-coordinates go down!

Write coordinates as 40 @ 60 One pixel = 1 dot on screen
screen roughly 1000 x 2000 pixels

Graphics Primitives

• Create all graphics objects on screen with
objectdraw library classes:
• framedRectAt (100 @ 250)size (20 @ 50) on (canvas),

• filledRectAt (100 @ 250) size (20 @ 50) on (canvas)

• framedOvalAt (100 @ 250) size (20 @ 50) on (canvas)

• filledOvalAt (100 @ 250) size (20 @ 50) on (canvas)

• textAt (100 @ 250) with (“hello!) on (canvas)

• lineFrom (100 @ 250) to (120 @ 300) on (canvas)

Mouse Event-Handling

• Methods:
• method onMousePress (pt: Point) -> Done {...}

• method onMouseRelease (pt: Point) -> Done {...}

• method onMouseClick (pt: Point) -> Done {...}

• method onMouseMove (pt: Point) -> Done {...}

• method onMouseDrag (pt: Point) -> Done {...}

• method onMouseEnter (pt: Point) -> Done {...}

• method onMouseExit (pt: Point) -> Done {…}

Code in {…} is executed when event occurs.
pt is location of mouse when event occurs.

Naming Objects

• Can associate names with objects:
• def box = filledRectAt (20 @ 20) size (100 @ 100)  

 on (canvas)

• Use names to change properties
• box.color := colorGen.red

• See UpDown program:
• http://www.cs.pomona.edu/classes/cs051G/demos/UpDown/UpDown.grace

