CS 51G Spring 2018

CS 51G Homework Laboratory # 9

Simon

Objective: To gain experience working with lists.

Many of you are probably familiar with the electronic toy named “Simon”. Simon is a simple
solitaire memory game. The toy is composed of a circular housing with four colored plastic buttons
on top. A different musical note is associated with each button. The toy “prompts” the player by
playing a sequence of randomly chosen notes. As each note is played, the corresponding button is
illuminated. The player must then try to play the same “tune” by depressing the appropriate buttons
in the correct order. If the player succeeds, the game plays a new sequence identical to the preceding
sequence except that one additional note is added to the end. As long as the player can correctly
reproduce the sequence played by the machine, the sequences keep getting longer. Once the player
makes a mistake, the machine makes an unpleasant noise and restarts the game with a short sequence.
An on-line version of the original toy can be played at http://www.freesimon.org. [Those of you who
are fans of ”"Dance, Dance, Revolution” may recognize “Simon” as an early inspiration. See if you can
figure out why it is similar and what extra would be necessary to program DDR.]

For this laboratory exercise, we would like you to write a Grace program to allow one to play a
simple game like “Simon”. Like the original, our game will involve four buttons which the player will
have to press in an order determined by the computer. We will keep the graphics simple by simply
placing the four buttons in a 2 by 2 grid as shown below.

® O 0O Simon Game "

' about:blank



http://www.freesimon.org

CS 51G Spring 2018

As soon as the buttons are displayed, your program should generate a list that initially consists of
a single note/button. It should “play” a list by briefly highlighting the buttons that belong to the list
in order. After a list is played, your program should wait while the player tries to repeat the sequence
by clicking on the buttons in the appropriate order. If the player repeats the list correctly, the program
should randomly pick a button to add to the end of the list and “test” the player on this new sequence.
If the user makes a mistake, the program makes a “razzing” sound and then starts over with a one note
sequence. We will explain all you need to know about making sounds in Grace below.

Your program will consist of two classes as well as the main program:

noisyButton will describe buttons that act like those found on a Simon game. (We will provide this
class.) It generates objects of type NoisyButton.

simonGame will be your main program, an object of type GraphicApplication. We will provide the
part of this that sets up the buttons.

song will manage the sequence of buttons/tones corresponding to the “song” played by the game which
the player needs to repeat. It generates objects of type Song. You are entirely responsible for
this.

There is a built-in library “timer” in Grace. It contains a method:
method after (ms:Number) do (b:BlockODone) -> Done

This method can be used to create a delay of ms milliseconds before executing the code in block b.
You can read about it in section 9.7 of the text. As a quick example, the following program waits two
seconds and then prints “hello”.

import "timer" as timer

timer.after (2000) do {
print "hello"

X

It is used in the song class to create an extra delay before playing the song.

Audio clips, ButtonPanels and NoisyButtons To complete this lab, you will need to work with
our noisyButton class and one new feature of Grace that we’ve talked about, but you haven’t used
yet: support for manipulating audio files.

Working with audio in Grace is quite simple. There is a class named audioUrl that generates
objects of type Audio. To create an object of type Audio, evaluate

audioUrl (webAddress)

where webAddress is a string representing the location of a .wav file on the web. (Grace can only play
.wav files. Others will need to be converted to this format.) Don’t forget to include the “http://”
prefix of your URL.

We will include five audio files in the starter folder for this lab. The files “tone.1l.wav”, “tone.2.wav”,
“tone.3.wav”, and “tone.4.wav” describe the sounds the NoisyButtons should make. The file “razz.wav”
contains the unpleasant noise your program should make when the user goofs.

There is only one method of the Audio type you will use in this lab. The method is named play. It
expects no parameters and simply plays a sound. So, if you declare a variable as:



CS 51G Spring 2018

def nastyNoise: Audio = audioUrl(
"http://wuw.cs.pomona.edu/ "kim/CSC051GF14/demos/SimonNotes/razz.wav")

then you can say:
nastyNoise.play

when you want to make a funny sound.

Our class noisyButton produces “buttons” that look and act like those found on a Simon game. Un-
like real buttons, our noisy buttons will live on the canvas. We provide you with a method setUpButtons
in your main program that will lay these out nicely on the canvas to look like the picture shown earlier.

In order to determine which button was pressed, each button has a contains method. You will find
it useful to write a helper method getButtonPressed that takes a Point and returns the button that
was pressed. If the user didn’t click on any of the buttons, it should return the default object noButton,
defined in NoisyButton.grace. The method getButtonPressed should be used in onMousePress to
retrieve the button that the user pressed when trying to reproduce the song.

The noisyButton class provides one other method that you will use in your program. The method
is named “flash”. It makes the button flash and plays the sound associated with the button.

The song class and simonGame object To complete this program, you will need to construct your
“main program”, simonGame, and a class that will manipulate the “song” played by the game.

Your song class will manage the sequence of tones corresponding to the “song” played by the game.
Internally, this class will represent the song using a list of NoisyButtons. You will need to use a variable
to keep track of which note the user is expected to play next. For example, suppose there are currently
8 notes in the song, but the user has not yet guessed any notes. The class song will need to keep track
that it is waiting for the user to play the first note. If the user gets the first note right, then it will need
to remember that it is now waiting for the second note, etc.

The song class (and its type Song) must provide methods to play the song, to determine the next
button the player is expected to click, to add a note to the song and several others. Determining exactly
what methods are appropriate to include in song and what parameters they should expect will be an
important part of the work you should do to prepare for this lab. (Be sure to add the method names
to the type Song as well as the class song. The key here is to consider what methods your simonGame
program needs in order to interact with the song. The method names should reflect how they affect the
song, not the underlying list. Think carefully what parameters the song class might need (e.g., what
are the pieces from which it will construct a song).

The method that plays the song will need to use animator in order to provide delays between the
notes as otherwise the notes will play too quickly and overlap each other. The song is represented by
a list of NoisyButtons. Each NoisyButton knows how to play itself (i.e. each will respond to the
invocation of its play method).

Finally, you will need to define a simonGame object. The initialization code for this class should
create and place the noisy buttons on the canvas and create a new song with a single noisy button. In
addition, the class should include an onMousePress method so that the program can react when the
player clicks on a button. We provide the code to create and place the noisy buttons in a method named
setUpMethods. It should look appropriate if your application creates a 250 by 250 pixel window, and
should not need to be modified in any way.

The first thing to do in the onMousePress method is to determine what noisy button was clicked
on. What happens next depends on whether or not the user clicked on the button corresponding to
the next note in the song. If not, the program should make a nasty noise and start a new game (by
creating the first note and playing it).



CS 51G Spring 2018

If the user got it right, there are two possibilities. The first is that it was the last note of the song.
If so, add a new note and play the entire song to the user so they can start over with emulating the
notes. If instead there are more notes to play, the program should keep track that the user is ready to
play the next note, but then do nothing more. Of course the onMousePress method will be executed
again when the user clicks the next button.

In summary, the onMousePress method begins execution when the user clicks on a button, and
terminates when it needs to wait for the user to click a button again. The work it does in that method
depends on whether or not the user’s guess was correct, and, if so, whether the user still has more notes
to repeat or whether she has finished all the notes in the song so far.

Design. The things you need to do before coming to the lab are described in the Lab Design Form.

1. down-load and read it.
2. work out the problems and fill in the required information.
3. print it out, and bring it in to the lab with you.

4. the TA and I will review it and give you feed-back.

Implementation. As usual, we suggest a staged approach to the implementation of this program.
This allows you to identify and deal with logical errors quickly. As stated earlier, the size of your
window should be 250 pixels wide by 250 pixels tall.

e Make sure the setUpButtons method works properly and the screen looks right.

e Once the buttons are displayed, you should make sure they can flash. Test this by adding an
onMousePress method to your simonGame that simply flashes the button that the user clicks on.
The getButtonPressed method described above should be helpful for this. Test and see if it works.

e Now, you can start working on the song class. Write any definitions and variables needed for the
class, and write a method to create a new Song with exactly one element (a noisy button). You
will need to run this when the song is created, but also every time the user makes an error in
trying to duplicate the song. In order to write this you will find it useful to have a helper method
the randomly picks one of the four noisy buttons to add to the next position in the song.

Test to make sure you can create a new song (your test should print out the contents of the song
so that you make sure you are randomly selecting elements).

e You should now implement the play method for the song. To test if this all works, modify the
noisyButtonClicked method in your controller so that when any button is clicked it adds a note
to the song and then plays the entire song.

e Finally, add a variable to the song class to keep track of the note the player should click next. For
example, if the user has just clicked on the first two notes in the song then this variable should
remember that the next note to be played is the third one. Then add methods to the class so
that the onMouseClicked method of your main program can ask the song class which button it
expects next and tell the Song when the correct button has been clicked, etc. Once these methods
are available, modify the onMousePress method so that it reacts as the rules of Simon dictate
when the player clicks on the buttons.


http://www.cs.pomona.edu/classes/cs051G/labs/simon/SimonPlanning.docx

CS 51G Spring 2018

Submitting Your Work The lab is due Monday at 11 p.m. as usual. When your work is complete
you should deposit it in the appropriate dropbox. Give it a name of the form 1ab9_lastnamefirstname.
Also make sure that your name is included in the comment at the top of Song.grace and SimonGame.grace.
Please do not modify the file NoisyButton.grace.

Before turning in your work, be sure to double check both its logical organization and your style of
presentation. Make your code as clear as possible and include appropriate comments describing major
sections of code and declarations.



CS 51G

Spring 2018

Sketch of classes provided for this program This file, NoisyButton.grace, need not be touched.

Only the relevant parts are shown here.

type NoisyButton = {
flash -> Done
contains(pt: Point) Boolean
==(other: NoisyButton) Boolean
}

// default if user doesn’t select a button
def noButton: NoisyButton = ...

class noisyButtonAt(locn: Point) color (buttonColor: Color)
sound (sound: Audio)
on (canvas: DrawingCanvas) -> NoisyButton {...}

Startup file for Song Many pieces are missing.

dialect "rtobjectdraw"

import "stimer" as timer
import "animation" as animator
import "NoisyButton" as nb

type NoisyButton = nb.NoisyButton

type Song = {
newSong -> Done
addNote -> Done
play -> Done
// what else?

X

// replace "new" with better name and any parameters needed
class songNew -> Song {

// length of pause before starting to play song
def pauseBeforeSong: Number = 900

// length of pause between notes
def pauseBetweenNotes: Number = 400

// create a new song with one note
method newSong -> Done {

/1?77
}

// Add a note to the song
method addNote -> Done {
/] 777



CS 51G Spring 2018

}

// play the song after a suitable delay
method play -> Done {
timer.after (pauseBeforeSong) do {
// use animator to play song with pauses

}
}

// More methods???

Startup file for SimonGame We will provide you with the following start-up code to help you get
going with the main program:

dialect "rtobjectdraw"
import "Song" as sg
import "NoisyButton" as nb

type NoisyButton = nb.NoisyButton
// type of song and its constructor

def simonGame: GraphicApplication = object {
inherit graphicApplicationSize(250 @ 250)

def buttonlist: ListNoisyButton = emptyListNoisyButton

// Initialize buttonList with four buttons and put on canvas
setUpButtons

// noise to play when player is wrong
def nastyNoise: Audio = audioUrl(
"http://www.cs.pomona.edu/ kim/CSCO51GF14/demos/SimonNotes/razz.wav")

// declare any other values needed and finish initialization.

// 2777

method onMousePress(pt: Point) -> Done {
// 7777

}

// Determine which button was pressed or if none, return noButton
method getButtonPressed(pt: Point) -> NoisyButton is confidential {



CS 51G Spring 2018

3

method setUpButtons -> Done is confidential {

def audiolist: ListAudio = emptyListAudio
for (1..4) do {i:Number ->
def nextAudio: Audio = audioUrl(
"http://www.cs.pomona.edu/ kim/CSCO51GF14/demos/SimonNotes/tone.{i}.wav")
audiolList.add(nextAudio)
3

def buttonSize: Number = 100

def maxColor: Number = 180

def reddish: Color = colorGen.r (maxColor) g (0) b (0)

def greenish: Color = colorGen.r (0) g (maxColor) b (0)

def bluish: Color = colorGen.r (0) g (0) b (maxColor)

def yellowish: Color = colorGen.r (maxColor) g (maxColor) b (0)

def inset: Number = (canvas.width - 2 * buttonSize) / 3
buttonList.add(nb.noisyButtonAt (inset@inset) color(reddish) sound (audiolList.at(1))
on (canvas))

buttonList.add (nb.noisyButtonAt (inset @ (2 * inset + buttonSize))
color (greenish) sound (audiolList.at (2)) on (canvas))

buttonlList.add (nb.noisyButtonAt ((2 * inset + buttonSize) @ inset)
color (bluish) sound (audioList.at (3)) on (canvas))

buttonlList.add (nb.noisyButtonAt ((2 * inset + buttonSize) @ (2 * inset + buttonSize))
color (yellowish) sound (audiolList.at (4)) on (canvas))

startGraphics



CS 51G

Spring 2018

Table 1: Grading Guidelines

Value

Feature

1 point
1 point
1 point
1 point

2 points
1 points
1 point

1 points
2 points
1 point
1 point
2 points
2 point

1 point
1 point
1 point
1 point

Design preparation (4 points total)
onMousePress method

inSong representation & declaration
Song method descriptions

Song player method

Readability (4 points total)
Descriptive comments

Good names

Appropriate formatting

Code Quality (8 points total)
Good use of constants

Variables, types, and scoping
Method parameters

Conditionals and loops

Good correct use of lists
Miscellaneous

Correctness (4 points total)

Playing songs

Comparing user input with songs

Restarting correctly when user makes mistake
Lengthening song correctly when user is right



