CS 51G Spring 2018

CS 51G Homework Laboratory # 7
Recursion Doodling
Due: by 11 p.m. on Monday evening, 3/26.

Objective: To gain experience using recursion.

Recursive doodling. This week’s assignment has two parts, each of which involves writing a recursive
program.

When we doodle, those of us who are less than gifted artistically often resort to making simple
geometric patterns on the backs of our notebooks, envelopes, napkins or whatever. One of the all-time
favorites is to draw smaller and smaller copies of a single shape inside of another. For example, one can
take a shape like a triangle or rectangle and then divide it up into smaller shapes (perhaps by drawing
lines between midpoints of adjacent sides) and then divide each of the new regions and so on until all
you have is a big blob of ink on the paper.

Fortunately, Grace’s drawing resolution is good enough that if we get it to do this kind of doodling,
we can produce things quite a bit more interesting than a big blob. For example, repeatedly dividing
triangles into smaller triangles can lead to a picture like that shown above.

This image was formed by first drawing a triangle and connecting the midpoints. This breaks the
triangle into four smaller triangles (at the top, center, lower-left, and lower-right).



CS 51G Spring 2018

The center triangle is then left untouched, but the top, lower-left, and lower-right triangles are
further triangulated in exactly the same way until the length of all of the edges is smaller than 12 pixels
long. (In case you are interested, this shape is called Sierpinski’s Gasket.)

How to Proceed The starter code is available on the web: http://www.cs.pomona.edu/classes/
cs051G/labs/recursion/TriangleStarter.grace| is the starter for Part 1, http://www.cs.pomona.edu/classes/
cs051G/labs/recursion/StairsStarter.grace is the starter for Part 2.

Because this triangle doodle is going to be a recursive structure, we will provide you with a type
for the doodle (called Movable). You will create a base object (called emptyDoodle), and a recursive
class (called complexDoodle). The only method that will be needed for triangle doodles is a moveBy
method, as specified in type Movable.

The emptyDoodle object represents an empty doodle. Like the empty scribble or empty target,
nothing is drawn on the screen, so the constructor and moveBy method are both pretty trivial.

The complexDoodle class is more complicated. It will need instance variables or defs for the lines
composing the outer triangle as well as instance variables or defs for the three triangle doodles inside.

The class will take parameters for the vertices of the triangle (in the order left, right, and top), its
color (i.e., the color for the outer triangle), and the drawing canvas. It should then draw lines of that
color between the vertices to form a triangle. It will also construct three more triangle doodles inside
this triangle. If any of the edges of the new triangle are long enough (say, with length greater than or
equal to 12 pixels), then the constructor should find the midpoints of each of the sides and then create
complex triangle doodles in the top, lower-left, and lower-right portions of the triangle (leaving the
middle blank). For these complex doodles, the one on the top should be blue, the one on the lower left
should be red and the one on the bottom right should be green. If none of the edges are long enough,
then just create three empty triangle doodles for the instance variables (as we did with scribbles). The
move method should move the lines forming the triangle as well as the contained triangle doodles.

We have provided you with a main program that inherits graphicApplication. It constructs a
new object from class complexDoodle. The onMousePress and onMouseDrag methods use the moveBy
method to drag the triangle doodle around (even when the mouse is not in the triangle doodle).

To start out, it often a good idea to do a simpler version of the problem. For example, first have
the class complexDoodle just draw a simple triangle out of lines. Then try drawing only the triangle
doodles in the top part of the triangle. Then add the lower right, then finally adding those in the lower
left portion.


http://www.cs.pomona.edu/classes/cs051G/labs/recursion/TriangleStarter.grace
http://www.cs.pomona.edu/classes/cs051G/labs/recursion/TriangleStarter.grace
http://www.cs.pomona.edu/classes/cs051G/labs/recursion/StairsStarter.grace
http://www.cs.pomona.edu/classes/cs051G/labs/recursion/StairsStarter.grace

CS 51G Spring 2018

The window should be set to be 400 pixels square for this problem. You will also find the distanceTo
method defined in the Point class useful to determine when to stop the recursion:

method distanceTo(Point otherPoint)

If you are not careful in writing this program (and the next one), you may get a StackOverflowError.
This will occur if your program continues to construct new triangle doodles without ever terminating.
You can avoid this if you make sure you have written the base class correctly and that the complex
doodle invokes its constructor only to create simpler doodles, eventually creating only empty doodles.

Do be aware that as the smaller triangles are drawn on top of larger triangles, the final picture you
draw will end up looking more like the one on the first page of this handout.

Part 2: Your second task is to draw the picture given below:

Let’s call this variegated stairs (got to love those big words!). A variegated stairs drawing is con-
structed by first drawing a large square. Then draw variegated stairs half as large on top of the square,
and variegated stairs, also half as large, immediately to the right of the square. Stop creating non-empty
stairs when the squares are less than 3 pixels on a side.

Each time you draw the stairs you should decrease the red and green components of the color by 30
pixels. That way you will obtain the nice shading as shown above. You can obtain the red, green, and
blue components from a color with the methods:



CS 51G Spring 2018

red -> Number
green -> Number
blue -> Number

As above, we will provide you with a type Draggable, and you will need to create an object,
EmptyStairs, and a class variegatedStairs. We have provided the main program. This time that
class will only drag the stairs around if the user presses the mouse down on the stairs. Thus you will
need to create methods contains and moveBy. The class header is:

class variegatedStairsAt (lowerLeft:Point) size (stairSize: Number)
color (stairColor: Color)
on (canvas:DrawingCanvas) -> Movable {

The first parameter is the lower left hand corner of the large square, while stairSize is the length of
the size of that square.

Submitting Your Work Labs are due Monday night, 3/26 at 11 p.m.

When your work is complete you should deposit in the appropriate dropoff folder a single folder con-
taining a separate file for each program. Make sure the folder name is of the form 1ab7_lastnamefirstname.
Also make sure that your name is included in the comment at the top of each Grace source file.

Before turning in your work, be sure to double check both its logical organization and your style of
presentation. Make your code as clear as possible and include appropriate comments describing major
sections of code and declarations.



CS 51G

Table 1: Grading Guidelines

Value

Feature

1 pt.
1 pt.

1 pt.
1 pt.
1 pt.
1 pt.

1/2 pt.
1/2 pt.
1/2 pt.
1/2 pt.

1/2 pt.
1/2 pt.
1/2 pt.
1/2 pt.

Readability (3 pts total)
Descriptive comments
Good names, constants

Semantic quality (3 pts total)
conditionals and loops
Parameters, variables, and scoping
Types

Base and recursive classes

Correctness (4 pts total)

Triangles

Draws initial triangle correctly
Recursive triangle moves correctly
Proper sub-division and coloration
Recursion stops at correct size

Stairs

Draws initial rectangle correctly
Recursive stairway moves correctly
Proper sub-division and coloration
Recursion stops at correct size

Spring 2018



