
CS 051G Spring 2018

CSCI 051G Practice Laboratory # 1
An Introduction to Grace and the ObjectDraw Library

Objective: To demonstrate the use of the lab computers, Grace, and graphics primitives

—
This lab will introduce you to the tools with which you will be working this semester. Your task is

fairly simple. You will construct a Grace program that draws an image resembling a roadside warning
sign, but with a message more appropriate for a computer screen, as shown below.

Then you will modify your Grace program so that it modifies the picture in simple ways in response
to actions the user performs with the mouse.

Part 1. Logging in & setting up your account

To get started, you must log in to one of the iMac computers in our lab.
Begin by entering the user name and password that you were provided for your computer science

account in the login window and click “Log in”. Once you log in, the screen should display a window
containing icons for some of the files you can access on the machine.

Hopefully you have already changed the password we assigned to your account to something that
only you will know and that will be easier for you to remember. Don’t, of course, make your new
password too easy to guess. In particular, at least use something that is a mix of letters and numbers.
However, do make sure you memorize it or write it down in some secure spot. You will need to use it
every time you use the CS lab. If you haven’t changed it, please do it soon as the password initially
assigned to you was not transmitted securely and your account will be hackable if you continue to use
that password. To change, see Corey in the office (218 Edmunds) off the glass-walled lab upstairs.

1

CS 051G Spring 2018

The files you create for our course laboratory projects will not actually be stored in the computer
on which you are working. Instead, they will be stored on our department’s file server. By entering the
account information for your account, you have instructed the computer you are using to access your
files on that server. You can access your files from any computer in our lab by simply logging in to that
computer.

Never just sit down and start working on a computer in the lab without logging in! If you do, you
will lose the work you do as you will be in someone else’s account.

Next observe that there is already a folder labeled “CS51GWorkspace” on the desktop for your
CS51G work. This is where you will do all of your work for this class.

To work on the lab, you will need to move some files from the course folder (named “cs051G”, with
a small red arrow in the upper corner) to your CS51GWorkspace folder.

1. Double click on the cs051G folder to open it. Double click on the “labs” folder.

2. Drag the “Lab1-Sign” folder to the CS51GWorkspace folder on your desktop

3. Close the “labs” folder by clicking in the red circle in the upper left corner of that window.

Using the MiniGrace editor & execution environment

We are going to be using a compiler for the Grace language called minigrace (because it doesn’t yet do
all the things we want in Grace). A compiler is a piece of software that takes a program written by a
programmer and converts it to a form that can be executed by the computer. In our case, the program
is going to be executed in a web browser, so the compiler will convert your Grace program to a much
more primitive program in the language Javascript, the language that web browsers understand.

To get started, go to the minigrace web page at http://www.cs.pomona.edu/∼kim/minigrace/. It
might take a few seconds to load. Be patient!

The web browser will display a window on your screen that should look like this:

2

http://www.cs.pomona.edu/~kim/minigrace/

CS 051G Spring 2018

The components in this window are divided into three main units.

The File Browser The area on the left side of the screen lists all of the files that the editor is currently
handling. Every file used in your program should be listed there. Click on a file to have its contents
appear in the Program Inspector.

The upload button (with upward pointing arrow) above this area can be used to load existing files
into the editor. Click on the button, navigate to the desired file and then select open. You can
also start a new file by clicking on the icon that looks like a page with a “+” to the right of the
“upload” button. It will be important for later programs to organize your code into folders for
each assignment. You can create a new folder by clicking on the icon that looks like a file folder
(again with a “+” on it) to the right of the new file icon.

Please click on the new folder icon now. When the dialog box comes up, name the new folder,
“Lab 1” (without the quotes). When you create or load files into the file browser, you can then
drag them into this folder (or just select the folder before creating or loading the file and it will
appear inside the folder.

The Program Inspector/Editor Panel The large rectangle appearing on the upper right part of
the window is the area in which the your program will appear when you load it. Above this area
there are two buttons: “download”, with a downward pointing arrow, which can be used to save
your file, and “delete”, which is used to remove a file from the system. Be careful with this as
if you delete a file before saving it, you will not be able to recover it. To save a file, you must
hold down the “Control” key while clicking on “Download”, type the file name in the dialog box,
navigate to where you want the file stored, and then click “save”.

Be careful. If you try to save a file that is already saved in the same place, the system adds a
” (1)” suffix to the file name. Then when we test your program we will end up grading the old
version rather then the new one. To avoid this, change the name of the file back to the original
before clicking on save.

Program Output In the bottom portion of the window is an area where program output can occur.
This can be either text printed out by your program or error messages generated by your program.

Just above the program output is a button that is initially labeled “run”, with a triangle next to
it. When pressed it will compile the file showing in the window. While it is compiling it will say
”Building” (and appear to shake from left to right). After it has built successfully, it will start
executing your program. In most cases this will pop up a window with any graphics items you
have drawn in the program.

The first line of the Program window may be showing the program Welcome.grace. Read it for
information about the system and click on “Run” to see what it does when it executes.

If that program is not there, you can write your own quick program by clicking on the new file icon
(the one that looks like a piece of paper with a + on it). Give the program a name (e.g. Hello.grace)
and then type the following:

print "Hello, world!"

Press the “Run” button in the middle of the window. After it finishes compiling, it will run and
display the output Hello , world! appear in the Program output window. Congratulations! You have
just compiled and run your first Grace program.

To make it even more exciting, go to the Program window and change “world” to your name. Make
sure the double quotes stay around the whole phrase to be printed.

3

CS 051G Spring 2018

dialect "rtobjectdraw"

// CS 51 Laboratory 1
// Enter your name, lab section and the date here.

object {
inherit graphicApplicationSize (500 @ 400)

method onMousePress(mousePoint: Point) −> Done {
// commands placed here are executed after the user clicks the mouse
}

method onMouseEnter(mousePoint: Point) −> Done {
// commands placed here are executed when the mouse enters the program window
}

method onMouseExit(mousePoint: Point) −> Done {
// commands placed here are executed when the mouse leaves the program window
}

method onMouseRelease(mousePoint: Point) −> Done {
// commands placed here are executed when the mouse button is released
}

// pop up window and wait for mouse actions
startGraphics

}

Figure 1: The contents of file NoClicking.grace

Part 2: Creating Graphical Programs

Now let’s begin to create your program for today. Almost every program you write will use the rtobject-
draw dialect. This is a special dialect of Grace that provides you with easy-to-use graphics primitives
and allows your program to recognize mouse actions. Dialect rtobjectdraw is a slight variant of the
objectdraw library discussed in the text. The only difference is that with this dialect, you must include
the types for all new identifiers in your program.

Click on “Upload”. Navigate to the file NoClicking.grace in your “CS51G Workspace” folder. Select
it and click on “open”.

The filename “NoClicking.grace” should now show up on the upper left corner of the window,
beneath the “Upload” button. The code we have provided you with will be in the edit window to the
right. Click on the “Run” button just below the editor panel. While it is compiling the button label
will say ”Building” and wiggle a bit on the screen. This will likely take a few seconds. When it is done
a 500 by 400 pixel window will also appear. Right now nothing will be in the window that popped up,
but you will fix that over the course of this lab. Close this window by clicking in the red box in the
upper left hand corner of the window. You are now ready to start working on your program.

The text of the program as it should initially appear in your Program window is shown in Figure ??.
The text we have placed in “NoClicking.grace” is the skeleton of a complete Grace program. It includes
an object expression whose first line is inherit graphicApplicationSize (500 @ 400). The combination of
this line and the last one: startGraphics ensures that when the program is executed it will pop up a

4

CS 051G Spring 2018

window that is 500 by 400 pixels and that when there are mouse actions, the system will respond by
executing the appropriate mouse event handling methods in the program.

Inside the object expression are headers for the event handling methods you will use. We have not,
however, included any Grace commands within the bodies of these methods, only a Grace comment
that reminds you when the Grace system will follow any instructions you might add to the method
body.

You should always follow our lead and begin writing your program by typing comments rather than
actual Grace commands. Near the top of the file we have included a temporary comment telling you to
enter your name, lab section and the current date. Such identifying comments are absolutely necessary
so the the grader can give you the appropriate grade. When they print out your program to grade it,
they do not see the name of the file or any folder it might be in. Hence it is crucial that you place your
name as a comment in every file you turn in.

You will be writing and editing your program in the web browser. Your first task will be to add
Grace instructions to the object expression to draw a “no clicking” warning sign. The code for this can
go immediately after the inherit line.

As a first step, let’s add the single instruction needed to draw the rectangle that frames the contents
of the sign. The form of the command you will need to enter is:

framedRectAt (pt) size (sz) on (canvas)

where pt should be replaced by an argument of the form x @ y, where x and y are numbers and (x, y)
is the location where you wish to place the upper left corner of the rectangle. Similarly sz should be
replaced by an argument of the form w @ y, where w is the width of the rectangle, and h by the height.
(The canvas stays as it is.)

We suggest that you place the rectangle so it will be centered in the upper portion of the window
(see the picture at the beginning of this document). A width and height of about 100 each should look
good.

When you are done adding this line to your program, click on the “Run” button below the program
text. If it compiles without errors, it should show a framed rectangle where you told it to create it.

Of course you might have made a mistake when you typed the program and you might have gotten
an error message in the output pane. If so, you should read the error message and correct the problem.
The error message should give you a line number and explain what the problem was. Hopefully it
will point out exactly the error you made, but sometimes it gets confused and will point at somewhere
different than where the error actually occurred. Try correcting your error and then click “Run” again.
If you can’t see what your error is, ask a TA or the instructor for help.1

You may not be happy with where your framed rectangle appears on the screen. If so, modify the
parameters to the construction and “Run” until you are happy with it.

Now that it does something, it would be a good idea to place a comment on the line before the
construction to say what it does so far. A comment starts with //. Anything after those two characters
to the end of the line will be ignored by the Grace compiler (but not human readers!), so write whatever
is helpful to a reader to understand your code. You should get in the habit of adding and updating
comments to keep them as accurate as possible as you add instructions to your programs. Not only
does this mean you will not have to go back and add comments when you’re done, it will help you to
remember what everything does as you are writing your programs.

If you are working on the iMacs in our lab and have not used Macs before, there really is not much

1Because our programs popup a new window with the graphic in it, if your browser is set to block pop-up window,
your programs will not execute. Instead you will get a message asking if you are blocking pop-ups. If this happens to
you, look for an icon with a small red “x” on the right side of the field where you type URL’s. On my computer, this is
just to the left of a blue star. Click on that and then select ”Always allow popups from http://www.cs.pomona.edu.” If
that doesn’t work, see the instructor or mentor to go into Chrome preferences to fix it.

5

CS 051G Spring 2018

difference between it and Windows (and Linux) any more. Cutting and pasting on the Mac is similar
to that with Windows except you use the “Command” or “fan” key, to the left of the spacebar, in
combination with “x” (for cut), “c” (for copy), and “v” (for paste). You can erase text by selecting it
and then hitting the backspace key.

Once your rectangle code is working, you should add more instructions to it to turn it into a
complete warning sign drawing program. Add additional lines to create a textAt (pt) with (contents)

on (canvas), a framedOvalAt (pt) size (sz) on (canvas), a lineFrom (start) to (end) on (canvas), and all the
other components. You will need to experiment to find reasonable coordinates and dimensions for the
various objects. By the way, in our drawing, the post is a rectangle, while the base is a line.

In the picture, we show a yellow background for the sign. Leave that part out of the version your
program draws for now; we will add it later. As you work, it is a good idea to “Run” your program
every time you add a line or two to ensure that you catch mistakes early. Also, make sure your comment
lines get updated by the time you are finished. When you are done, your program should draw a sign
when it is executed.

This is a good time to save your program. While holding down the “Control” key, press on the
“Download” button, and select “Save link as ...”. Navigate to the right folder, make sure that the file
name is correct, and then click ”Save”.

By the way, every once in a while something evil will happen and the web browser will crash. Don’t
panic! When modern web browsers are restarted, they generally restore whatever state they are in,
including your program text. If the browser has difficulty, make sure it is restoring only your program
text and not the window with the canvas on it. We’ve generally experienced little difficulty with this.

Making Your Program Responsive

Now, to explore event handling methods a bit more, revise your program so that it reacts to the mouse
in more interesting ways. In the revised version, the sign will change as the program runs. In particular,
when the user moves the mouse into the program window or presses the mouse, your revised code will
alter the appearance of the sign.

Making the sign change in response to the mouse is a bit tricky. Suppose, for example, that you
want to emphasize the sign’s warning by changing the color of the word “CLICKING” from black to
red when the user moves the mouse into the program’s window. There is a method color := that you can
use to change the color of the text. There is also an obvious place to tell Grace to make this change.
The onMouseEnter method is executed whenever the mouse moves into your program window. Placing
an appropriate color := in that method would do the trick.

The problem is that you can’t simply say color := in the onMouseEnter method. If that was all you
said, Grace would have no way of knowing which of the several objects’ color to change. It could change
the rectangle, the oval, the text, all of them, etc. Your code has to be more specific and identify the
object that should change.

To be able to specify the text object as the object whose color we wish to set, we will have to give
it a name. We will use the name message, but we could use any name that seems appropriate.

Associating a name with an object requires that we include a line that introduces the identifier and
that provides an initial value. We plan to associate the name message with the object created with
text, so we have to tell Grace that the name will be associated with that object. The form of a Grace
definition is simply to write the keyword def followed by the name being declared, the type of the value
represented, =, and the value the identifier will be associated with. So, the form for our declaration is:

def message: Text = textAt (...) with (...) on (canvas)

where the code to the right of the = is exactly what you had written originally to create the text. As
a result, all you must do now is to add the def message: Text = before the existing code.

6

CS 051G Spring 2018

Notice the difference between the class name text, and the type Text. The first represents the code
used to actually create the object on the screen, while the second tells you the kinds of things you can
do with it. Think of it as being like the difference between being able to build a car and understand
how everything works, to instead just understanding that turning the wheel and pressing the gas pedal
change the direction and speed of the car. For the objects constructed using the objectdraw library,
we just need to know how to use the objects (hence the types are most important). In a few weeks,
however, we’ll start building our own objects, and we’ll have to focus on the details of actually building
them. We distinguish between types and classes by always starting type names with capital letters and
classes with lower-case letters.

Now that the text has a name, we can use the name to change its color. Within the body of the
onMouseEnter method add the line:

message.color := colorGen.red

Then, run your program (correcting any errors as needed).
The program isn’t quite complete. It draws the sign immediately and makes the text turn red when

the mouse enters the window, but it doesn’t make the text black again when the mouse is moved back
out of the window. You should be able to figure out what to add to make it black when the mouse
exits. Give it a try.

To get more practice using names and other event handling methods, we would like you to modify
your program a bit more. First, change the program so that while the user is depressing the mouse
button, the circle with the diagonal line through the text disappears. (Of course, it should reappear
when the mouse is released.) This will require that you declare names for the circle and the line and
associate them with the correct objects. This can be accomplished by adding def ... = to the beginning
of the statements creating those objects. The circle can be given type Graphic2D and the line type Line.
Your code to make the objects disappear and reappear goes in the onMousePress and onMouseRelease

methods. You can use the visible := methods with right hand side either false or true to handle the
disappearing and reappearing.

Finally, add the yellow background to the sign using a filled rectangle. We didn’t have you do this
earlier because you had not yet seen how to associate names with objects. Associate a name with
the background rectangle when you create it and then use the name to set its color to yellow. Think
carefully about where to put this code in your program so that the shapes are stacked in the right order.
If you put it in the wrong place then the circle, line and text will be hidden behind the yellow filled
rectangle!

Grading Guidelines

In general, about half the points in each lab will be for correct functionality and the other half for the
quality of the code you write in the program. This lab is worth 10 points, which are distributed as
shown in Table ??:

The last point in the table is worth additional discussion. Often there are several Grace commands
that can be used to accomplish the same result. It is important to pick the most appropriate commands.
For example, in this lab you could make your circle and slash disappear by sending them behind the
background, but this would not be the best choice as it is not obvious what your intent is and there is
a more direct way of accomplishing the same result.

7

CS 051G Spring 2018

Table 1: Grading Guidelines

Value Feature
2 pts. Drawing the sign correctly when the program starts
2 pts. Changing the color of the text correctly
2 pts. Making the slash and circle disappear and reappear correctly
1 pt. Meaningful names used in definitions
1 pt. Informative comments
1 pt. Good and consistent formatting
1 pt. Good choice of Grace commands

Submitting Your Work

Congratulations, you have written a Grace program! You are encouraged to continue experimenting
with it. Before you do, however, you should submit it as a completed assignment. The submission
procedure is electronic and will be basically the same every week.

• First, return to the editor and make sure you included your name and course number in a comment
at the start of the program. Then save it one more time.

• On the desktop, navigate to your folder called “Lab1-Sign” in your CS51GWorkspace folder. You
should now rename that folder by clicking on it and pressing return, and giving it a name of the
form Lab01 LastnameFirstName, where you replace Lastname and Firstname by your namesr. Thus,
if your name is Jane Doe, you would name this lab Lab1 DoeJane. Given the number of students
in CS 51 (all flavors) we need you to use this kind of uniform naming scheme to make sure we
don’t accidentally miss your program. Do not use spaces or periods in your folder names.

• Now open the “cs051G” folder icon on the desktop by double-clicking on it. Within the “cs051G”
folder you should see a “dropbox” folder.

• Drag the folder you just created into the dropbox folder. When you do this, the computer may
warn you that you will not be able to look at this folder. That is fine. Just click “OK”.

You can submit your work up to 11 p.m. on Tuesday evening. If you submit it and later discover
that your submission was flawed, you can submit again. We will grade the latest submission made
before the 11 pm deadline. The computer may not let you submit again unless you change the name of
your folder slightly. It does this to prevent another student from accidentally overwriting one of your
submissions. Add a version number to each new submission. For example:

• Lab01 LovelaceAda . . . original submission

• Lab01 LovelaceAda V2 . . . first revision

• Lab01 LovelaceAda V3 . . . second revision

Please do not wait until the last minute to submit your program. We will use the time recorded by the
computer to determine whether the program was on time.

When you are done with your session, be sure to log out of the computer by selecting “Log Out”
from the “Apple” menu as you did earlier. Please log out each time you leave as otherwise anyone who
sits down at the computer can get full access to all of your files.

8

