CS 051 Spring 2018

CS 051 Homework Laboratory # 4
Boxball

Objective: To gain experience defining constructor and method parameters and using animation.

The Scenario.

For this lab, we would like you to implement a game called Boxball. This is a simple game in which
the player attempts to drop a ball into a box. Boxball has 3 levels of difficulty. With each increasing
level, the box gets smaller, and the player is required to drop the ball from a greater height.

When the game begins, the playing area is displayed along with three buttons that allow the player
to select a level of difficulty. Selecting a level of difficulty affects the size of the box and the position of
the line indicating the minimum height from which the ball must be dropped. The player drops a ball
by clicking the mouse in the region of the playing area above the minimum height line. If the ball falls
completely within the box, the box is moved to a random location. Otherwise, it remains where it is.
In either case, the player may go again, dropping another ball.

The boxball playing area should appear as follows:

e—— i —— "

Boxball

Easy HMedium Hard

Let's play!

Applet Loaded 7

To start, drag the BoxBall starter folder from the file server and then upload the starter code
into Chrome. You can also look at the starter code by clicking on http://www.cs.pomona.edu/classes/
cs051G/labs/boxball /BoxBall.grace.

Design of the program.

For this lab you will need to define a box class for the box that moves back and forth, a ball class for the
falling ball, and a boxball object for the main program that will inherit graphicApplication. You

http://www.cs.pomona.edu/classes/cs051G/labs/boxball/BoxBall.grace
http://www.cs.pomona.edu/classes/cs051G/labs/boxball/BoxBall.grace

CS 051 Spring 2018

are expected to come to lab with a design for each class and object that corresponds to the functionality
specified in parts 1, 2, and 3 described below. 15% of your lab grade will depend on the design you
bring to class.

As usual you should draw a picture of the screen, assigning coordinates for the various items showing.
You must also show the declarations of instance variables to be used in your program, and for each of
the methods for each class, write an English description of what it does.

The boxball program/object should be responsible for drawing the playing area when the program
starts. It should also handle the player’s mouse presses. If the player presses on an easy, medium, or
hard button, the starting line should move to the appropriate height and the box should change its
width appropriately. If the player presses within the playing area above the starting line, a new ball
should be created and dropped from that height. If the player clicks below the starting line, nothing
should happen.

The ball class should allow you to create a ball that falls at a constant rate. When the ball reaches
the bottom of the playing area, the player should be told whether the ball landed in the box. The ball
should then be removed from the canvas. If the ball lands in the box, the box should be instructed to
choose and move to a new location.

The box class will allow you to create and manipulate the box at the bottom of the playing area. A
box is responsible for knowing how to move to a new random location when the ball lands in the box.
It also is responsible for changing size if the player changes the difficulty level.

Part 1: Setting up Start by setting the layout of your playing area, using the familiar objectdraw
shapes. Our playing area has both width and height of 400. The code for building the playing area
should go in BoxBall.grace. (The canvas itself should be set to be 500 by 600 pixels when inheriting
from graphicApplication.)

Once you have set up the playing area, add the Easy, Medium, and Hard buttons to your layout.
The buttons are just rectangles that will respond to mouse presses. After you've displayed the three
buttons, add code to the onMousePress method that will adjust the level of the starting line, depending
on the button pressed. If the player selects the “Easy” buttton, the line should be relatively low. If the
player selects the “Hard” button, the line should be quite high.

Part 2: Adding the box Next, you should add a box to your layout. To do this, you will need to
write the box class that will allow you to create and display the box object at the bottom of the playing
area.

A box is really just a rectangle, but there is some important information you will need to pass to
the box class in order to construct it properly. First, you need to tell the box where it might appear on
the display. Remember that its horizontal position will change over time, but its vertical position will
always be the same. What are the extreme left and right values for its possible horizontal positions?
All of those will need to be provided to the box class when it creates a new Box.

In order for the rectangle to be drawn, you will also need to tell the box what canvas it should be
drawn on. This information will be passed on to the constructor for the rectangle.

The box needs one more piece of information for it to be drawn correctly. It needs to know how
wide it should be. Of course, even in its hard setting, the box should still be a little wider than the ball.
Since the boxball object will create both the ball and the box, it knows their relative sizes. Therefore
the boxball object should tell the box how big it should be when the box is created.

Once you have written the initialization code for the box class, you should go back to the boxball
code and create a new Box.

The default setting for the game is “Easy”. If the player presses on the “Medium” or “Hard” button,
the box should get smaller (or much smaller). The box needs a method, width:=(...), to allow its size

CS 051 Spring 2018

to change when the player presses on Easy, Medium, or Hard. Think carefully about what parameters
you need to pass to width:= to accomplish this command.

After writing the width:= method, test it by modifying the onMousePress method in the boxball
program. Pressing on one of the level selection buttons should now not only raise or lower the bar, but
it should also adjust the size of the box.

Note: Some of you may be tempted to skip the box class and just use a framedRect, putting the other
behavior elsewhere. Please do not do this, as writing the box class will help you practice some of the
kinds of coding that will be needed in future labs. You will not receive full credit if your Box does not
have the specified behavior

Part 3: Dropping a ball The player will create a ball by pressing with the mouse in the playing area
above the starting line. When the press is detected, a new falling ball should be constructed using class
fallingBall so that its center is at the point where the user pressed. It should also start it moving
down the screen. To do so, it will call a start method, which will cause the corresponding method in
fallingBall to execute.

You need to think carefully about what information a ball needs to know to construct itself properly
and be able to check at the end whether it was inside the box. Recall that boxBall knows how big the
ball should be (so that the ball and the box can be sized appropriately). boxBall also knows where the
mouse was pressed. This should be the starting location for the ball. You need to pass this information
to the ball class constructor so that it can draw itself and fall.

To get the ball to fall, you will need to do some work. This will be done using the method
while{}pausing(Ddo{}finally{} of animator. We will use a bit of video game magic to make the
ball appear to fall. The ball will appear to move smoothly down the screen, but in fact, it will be
implemented by a series of movements. Each movement should move the ball a short distance, wait a
short time, and then move again. The while{}pausing()do{}finally{} will accomplish this. On each
iteration of the while loop, the ball should move a small distance, say 4 pixels. Then it should wait a
short time. We suggest that the program pause for 30 milliseconds. There are 1000 milliseconds in a
second. Moving short distances that rapidly will appear to be continuous movement to the human eye.
This is the same technique that television and movies use to provide continuous motion. To complete
the while statement, you need to provide the condition that determines when to exit the while loop.
Specifically, the ball should stop moving when it reaches the bottom of the playing area (i.e., the top of
the ball is no longer in the playing area). Do not stop it when it just touches the bottom of the playing
area. It must go all the way out! You may leave the finally clause empty for now. We will come back
to it in part 4.

Once you have written the fallingBall class and the while loop, you should test them. Return
to your boxBall program, and add code to the onMousePress method that will construct a ball if the
player presses above the starting line in the playing area. At this point, do not worry about whether
the ball falls in the box. Just check that it is drawn at the right starting location and that it makes its
way to the bottom of the playing area.

Part 4: Checking the box Now you are ready to determine whether the ball fell in the box. After
the ball reaches the bottom of the playing area, it should compare its location to the box’s location. Of
course, the ball will need to find out the box’s location. The box class needs to provide methods left
and right that give the x-coordinates of the edges of the box. To call those methods, the ball class
must know about the box. Go back and modify your Ball class to pass in the Box as an additional
parameter. If you don’t do this, the Box will not be able to tell if the ball is inside it.

If the ball lands in the box, you should display the message “You got it in!”. If the ball misses,
you should display “Try again!”. Since the boxBall object is responsible for the layout of the game,

CS 051 Spring 2018

it should construct a Text object that displays a greeting message. The Text object should be passed
to the fallingBall class as a parameter so that the ball can change the message appropriately when
it hits or misses the box. (Note that while we have an overlaps method for graphics objects, we do
not have a method that determines whether an object is entirely contained in another unless the first
is just a Point. Hence you will need to figure out how to do this.

Test the additions that take care of checking whether the ball fell in the box.

Finally, use the random number generator (i.e., randomIntFrom) to pick a new location for the box
when the player gets the ball in the box. The box should be responsible for picking the new location
and moving itself. Therefore, you will need to add a method to the box class called moveBox. It will
need no parameters as it is responsible for randomly choosing the new location and moving the box
there. Important: The box MUST decide where to move itself. You will lose points if
moveBox takes parameters.

When the boz is narrow it’s left edge can have a relatively large © coordinate while still having the
whole box in the playing area. However, when the box is wide, it cannot move quite as far without
having its right edge going outside the playing area. You may set up the random number generator to
only give values that will result in the widest box staying inside the playing area. For extra credit, you
can further refine the program so that even the narrower boxes can end up all the way on the right of
the playing area.

By the way, some of you may be tempted to figure out whether the ball will land in the box by checking
at the moment the ball is dropped — anticipating that the ball will fall straight down. Unfortunately, that
won’t always work if multiple balls are falling. The problem is that the first might get in the box —
resulting in the boxr moving — all while the second is falling. The bottom line: Don’t check whether the
ball is in the box until the ball falls down all of the way.

Due Dates

As usual this assignment will be due at 11 pm on Monday evening.

Submitting Your Work

Before submitting your work, make sure that your .grace file includes a comment containing your name.
Also, before turning in your work, be sure to double check both its logical organization and your style of
presentation. Make your code as clear as possible and include appropriate comments describing major
sections of code and declarations. In particular, be sure it conforms to the guidelines in the CS 51G
Style Guide. In particular make sure your indentation is consistent.

Turn in your project the same as in past weeks. Change the name of the folder to
Lab4_LastNameFirstName” where “LastNameFirstName” is replaced with your own last and first name.
Once you have renamed the folder, please drag it to the dropoff folder.

CS 051 Spring 2018

Table 1: Grading Guidelines

Value Feature
Design preparation (3 pts total)
1 pt. Boxball class
1 pt. Box class
1 pt. Ball class

Readability (7 pts total)
2 pts. Descriptive comments
2 pts. Good names
2 pts. Good use of constants
1 pt. Appropriate formatting

Code Quality (5 pts total)

1 pt. Good use of boolean expressions
1 pt. Not doing more work than necessary
1 pt. Using most appropriate methods
1 pt. Good use of if and while statements

1 pt. Good choice of parameters

Correctness (5 pts total)
1 pt. Drawing the game correctly at startup
1 pt. Changing box size and line height correctly
1 pt. Dropping the ball
1 pt. Determining if the ball landed in the box
1 pt. Moving the box after the ball lands in it
Extra credit (1 pt max)
1 pt. Ensuring that the box can be placed to but not past the edge at all sizes.
1 pt. Display continuously updated hits/misses scores.

