
CS 51G Spring 2018

CS 51G Laboratory # 10
Apples

Objective: To practice using String methods.

—
In this lab we’ll be implementing a version of the game Hangman. Hangman is a simple game in

which one person, the “supplier”, thinks of a word and another person, the “guesser”, tries to guess
it. The game starts with the supplier writing down a row of dashes, with each dash representing one
letter in the word. The guesser then repeatedly guesses a letter. If the letter appears in the word, the
supplier replaces each appropriate dash with that letter. If the letter doesn’t appear in the word, the
supplier makes a note of that. The guesser is allowed some number of incorrect guesses before they
lose the game. In our case they’ll be allowed 6 incorrect guesses.

The name Hangman comes from the fact that instead of simply noting that the guesser has lost
because they’ve guessed 6 letters that don’t appear in the word, traditionally the supplier has drawn a
feature of a hanging person for each incorrect letter, with the guesser losing when the complete figure
of a hanging person has been drawn.

In our case we’ll be playing a (G-rated) version of the above game called Apples. In this version,
the supplier (your program) draws a tree with 6 apples, and each incorrect guess by the guesser causes
one apple to fall off the tree. When all the apples are gone, the guesser has lost.

Guesses in either uppercase or lowercase are acceptable. That is, if there is a “b” in the hidden
word then a guess of either “b” or “B” will identify it. Furthermore, nothing happens if you guess a
letter that you’ve already guessed before.

Overview

Your program will consist of two classes plus two objects:

1



CS 51G Spring 2018

dictionary will be an object that is responsible for reading a file of words to be guessed. It also has a
method returning a random word from that file.

apples will be the object corresponding to the main program. It sets up the game interface.

appleGame will be the class that maintains the state of the game.

appleGameDisplay will be the class that maintains the image of the apple tree.

We will provide a complete implementations of the appleGameDisplay class, which is described. in
the following section. You’ll need to write the other three, following the specifications below.

The dictionary object The starter folder for apples contains a file appleWords.txt that contains
the words that can be used in the game, with each on a different line of the file. The dictionary object
will read in the contents of that file, placing all of the words in a list.

This object has a single method:

getRandomWord -> String

That randomly chooses a word from the list and returns it.
Be sure to load the file appleWords.txt into the browser before executing this object. Also be sure

to wrap the file handling code in a try-catch block as we did in the demo program Bookmark.grace

in class. If the file is not found, the catch clause should simply print a message saying that the file
appleWords.txt was not found.

The AppleGameDisplay class This class deals with drawing the tree with the apples and provides
methods that let you remove an apple and that let you refill the tree with apples. The type is:

type AppleGameDisplay =

// show all the apples in the tree

fillTree -> Done

// return number of apples still visible in tree

numApplesLeft -> Number

// hide one of the apples in the tree

removeApple -> Done

The class header is

class appleGameDisplay (numApples: Number) on (canvas: DrawingCanvas)

-> AppleGameDisplay

We have provided all of the code for appleGameDisplay, but you are welcome to read it.

2



CS 51G Spring 2018

The appleGame class The appleGame class will manage the state of the game. This involves three
basic things:

• the word the person is trying to guess

• the current state of the dashed word (i.e. the guesser’s current partial knowledge of the word),
and

• what letters have been guessed so far.

You should keep track of each of these as a string. (Don’t use lists, as we want you to practice
string operations.) Don’t forget that Strings are immutable, so any operation that seems to
change a string actually generates a new string! Remember there are operations to create new
strings out of pieces of old string (and you will need to use them).

In class appleGame, you will: ,

• Generate and update the state of the tree using an appleGameDisplay object.

• Generate and update the textual display of the game.

The class for appleGame should have the following header:

class appleGame(numApples: Number)

on (canvas:DrawingCanvas) -> AppleGame

where

type AppleGame = {
// Set up a new apples games

newGame -> Done

// If a game is going on, take a guess and respond appropriately:

// If correct, add all occurrences to the current word display

// If wrong, and not guessed earlier, add to list of wrong guesses

// and remove an apple from the tree

guessLetter(letter:String) -> Done

}

Method guessLetter takes a character letter and, if it hasn’t already been tried, determines whether
or not it appears in the word, and updates both the text and the picture accordingly (remember the
guesses should be case insensitive).

Method newGame resets both the text and tree display (i.e., makes all the apples visible), and chooses
a new word from the dictionary. That is, you should be able to play as many games as you like without
restarting the program.

The apples object This object manages the response to user actions. The object should set up the
GUI so that there’s a Button labeled “New Game” and a TextField for entering guesses. It should
begin with a word for the user to guess (i.e., the user should not have to press the new game method
in order to start playing).

The user interacts with the game by entering a letter into the field and pressing enter. If the string
entered is more than one character or is not a letter then the program should not respond, and should
again prompt the user to enter a letter.

3



CS 51G Spring 2018

Design

The things you need to do before coming to the lab are described in the Lab Design Form.
You only need to provide a design for the appleGame class and the WordSupplier and apples

objects since we provide the code for the other class. At the beginning of the lab, we’ll come around
and briefly examine each of your designs to make sure you are on the right track. At the same time,
we’ll assign a grade to your design.

Starter code is available as usual in the CS51G folder on lab machines, but as a convenience you
can also download it from the web:

• http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/AppleGame.grace.

• http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/AppleGameDisplay.grace.

• http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/Apples.grace.

• http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/WordSupplier.grace.

• http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/appleWords.txt.

Implementation

As usual, we suggest a staged approach to the implementation of this program. This allows you to
identify and deal with logical errors quickly. The dimensions of your window should be 300 pixels wide
by 400 pixels tall.

• Start by getting the initial GUI setup so that the textfield and the button are in the right place.

• Now write the dictionary object to read in the contents of appleWords.txt into a list. Make sure
everything is read in correctly and the getRandomWord method is working correctly.

• Now write the initialization code and the newGame method for the appleGame class, ignoring the
tree display. Make sure that when you choose a new random word from the dictionary, you can
display the right number of dashes. Add in the action to be taken in the apples object when the
button is pressed and verify that the New Game button causes a new word to be chosen and the
display to be updated properly.

• Next write the guessLetter method for the appleGame class. Again, ignore the tree display, and
just make sure that your code correctly determines whether the letter appears in the word and
that it updates the text display appropriately. Add in the action for the textfield and verify that
the GUI works correctly.

• Finally, add in the code that uses the AppleGameDisplay class to update the image of the tree.

The challenging string manipulation question for this lab is how to update the dashed word when a
new letter is entered. There are many ways to do this, one reasonable way is to first check if the letter
appears in the word at all. If so, iterate through the characters in the word to be guessed, and if the
character occurs in it, then update the dashed word. To do this, you can build up a new, temporary,
dashed word as you go along, then when you get to the end replace the original dashed word with the
temporary one. Think about this problem before beginning coding the guessLetter method! Also
don’t forget that a letter may appear in a word multiple times.

4

http://www.cs.pomona.edu/classes/cs051G/labs/apples/Planning.docx
http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/AppleGame.grace
http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/AppleGameDisplay.grace
http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/Apples.grace
http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/WordSupplier.grace
http://www.cs.pomona.edu/classes/cs051G/labs/apples/Starter/appleWords.txt


CS 51G Spring 2018

Submitting Your Work

The lab is due Monday at 11 p.m. as usual. When your work is complete you should deposit it in the
appropriate dropbox. Give it a name of the form lab11 lastnamefirstname. Also make sure that your
name is included in the comment at the top of all the files you turn in.

Before turning in your work, be sure to double check both its logical organization and your style of
presentation. Make your code as clear as possible and include appropriate comments describing major
sections of code and declarations.

Table 1: Grading Guidelines

Value Feature
Design preparation (4 points total)

1 points apples object questions
1 points dictionary object initialization
2 points appleGame class questions

Syntax style (5 points total)
2 points Descriptive comments
1 points Good names
1 points Good use of constants
1 point Appropriate formatting

Semantic style (4 points total)
1 point Conditionals and loops
1 point General correctness/design/efficiency issues
1 point Parameters, variables, and scoping
1 point Miscellaneous

Correctness (7 points total)
1 point GUI works
1 point game stops and restarts correctly
1 point dictionary read in and words chosen properly
2 points handles letters input correctly
1 point text display correct
1 point tree display correct

Extra Credit (2 points maximum)
.5 point Better text/tree graphics
.5 point Better interface

5


