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Abstract

Motivated by the continuing interest in the tree data model, we study the ex-
pressive power of downward navigational query languages on trees and chains.
Basic navigational queries are built from the identity relation and edge relations
using composition and union. We study the effects on relative expressiveness
when we add transitive closure, projections, coprojections, intersection, and
difference; this for Boolean queries and path queries on labeled and unlabeled
structures. In all cases, we present the complete Hasse diagram. In particular,
we establish, for each query language fragment that we study on trees, whether
it is closed under difference and intersection.

Keywords: tree data model, relational calculus with transitive closure,
downward query language fragments, path queries, Boolean queries, relative
expressive power

1. Introduction

Many relations between data can be described intuitively in a hierarchical
way, including the taxonomy of species studied by biologists, corporate hierar-
chies, and file and directory structures. A logical step is to represent these data
using a tree-based data model. To illustrate this, consider the hierarchical class-
structure of a program described by relations subclass and method, an example
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of which is visualized by the tree in Figure 1. Given the naturalness of trees
to represent hierarchically structured data, it is not surprising that tree-based
data models have been continuously studied since the 1960s in the form of the
hierarchical data model [1], XML [2] and, more recently, JSON [3]. In addition,
the tree data model is a specialization of the more general graph data model
(e.g. [4–6]).

Object

toString()

method

AbstractList

subclass

size()

method

ArrayList

subclass

LinkedList

subclass

addFront(element)

method

Figure 1: The hierarchical relations within typical list-classes in a Java-like object-oriented
programming language.

Query languages for tree and graph data usually rely on navigating the tree
structure to find data of interest. For tree data, this navigation is often in a
top-down fashion, which we refer to as downward navigation. In the JSON data
model, for example, most data retrieval is done by explicit top-down traversal
of a data structure representation of the JSON data. Even in more declarative
settings, such as within the PostgreSQL relational database system, the JSON
query facilities primarily aim at downward navigation.1 This focus on downward
navigation is also found outside the setting of JSON data. As examples, we
mention XPath [7–10] in which many queries rely on navigating the parent-
child axis, the nested relational database models that use downward navigation
via nesting and unnesting as an important tool to query the data (see, e.g., [11]),
and graph query languages such as SPARQL [12, 13] and the regular path queries
(RPQs) [14].

The core navigational power of query languages can be captured by frag-
ments of the calculus of relations, popularized by Tarski, extended with transi-
tive closure [15, 16]. In the form of the navigational query languages of Fletcher
et al. [5], the relative expressive power of these fragments have been studied in
full detail on graph-structured data [17–19]. On graph-structured data, Fletcher
et al. showed that only language fragments that can express the same operators
via straightforward rewriting rules have the same expressive power. Surpris-
ingly, much less is known for the more restrictive tree data model, however. In

1For details on what PostgreSQL provides, we refer to https://www.postgresql.org/docs/

10/static/functions-json.html. Observe that all basic arrow operators provided by Post-
greSQL perform, in essence, downward navigation.
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particular, the separation results on graphs of Fletcher et al. do not necessarily
also apply to trees. Moreover, the expressiveness results for several XPath frag-
ments [8, 9, 20–24] in the context of XML only provide an incomplete picture
of the relative expressive power of the navigational query languages we consider
here.

As a first step towards a more complete picture on querying tree data, we
study the expressive power of downward navigation. To do so, we start with a
basic query language in which queries are built using edge relations, the iden-
tity relation (id), composition (◦), and union (∪). We study the effect on the
expressive power if we add projections (π), which can be used to express condi-
tions similar to the node-expressions in XPath [8] and the branching operator in
nested RPQs [14]; coprojections (π), which can be used to express negated con-
ditions; intersection (∩); difference (−); and transitive closure (∗). To illustrate
the power of these operators, consider the following queries:

e1 = subclass ◦ (subclass ∪method);

e2 = π1[method ]− π1[subclass ◦ [subclass]∗ ◦method ];

e3 = π1[method ];

e4 = [subclass ◦ π1[method ]]∗.

In these expressions, π1 denote projection on the first column, while π1 denotes
projection on the complement of the first column. On the tree data of Figure 1,
e1 returns classes and the subclasses and methods defined by their subclasses,
e2 returns all classes that define their own methods while excluding classes that
have descendants that define their own methods, e3 returns all classes that
do not define their own methods, and, finally, e4 returns classes and all their
descendant classes that define their own methods.

For these fragments, we study relative expressiveness for both path queries,
which evaluate to a set of node pairs, and Boolean queries, which evaluate
to true or false. We consider not only labeled trees, but also unlabeled trees
and labeled and unlabeled chains, the reason being that most query languages
are easier to analyze on these simpler structures and inexpressiveness results
obtained on them can then be bootstrapped to the more general case. For all
the cases we consider, we are able to present the complete Hasse diagram of
relative expressiveness; these Hasse diagrams are shown in Figure 2. Some of
our results extend to the diversity relation (di) and to converse (a), which both
are non-downward.2 For completeness, we have included these extended results.
In several cases, we are able to argue that pairs of downward fragments of the
navigational query languages that are not equivalent in expressive power when
used to query graphs, are already not equivalent in expressive power on the
simplest of graphs: labeled or unlabeled chains. Hence, for these languages, we
actually strengthen the results of Fletcher et al. [5].

In the cases where graphs and trees yield different expressiveness results, we

2For a formal definition of diversity and converse, we refer to Definition 2.1.
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are able to prove collapse results. In particular, we are able to establish, for each
fragment of the navigational query languages that we study, whether it is closed
under difference and intersection when applied on trees: adding intersection to
a downward fragment of the navigational query languages never changes the
expressive power, and adding difference only adds expressive power when π is
present and π is not present, in which case difference only adds the ability to
express π.

To prove these closure results, we develop a technique based on finite au-
tomata [25], which we adapt to a setting with conditions. We use these condi-
tion automata to represent and manipulate navigational queries, with the goal
to replace ∩ and − operations. We also use these condition automata to show
that, in the Boolean case, π never adds expressive power when querying labeled
chains. With homomorphism-based techniques, we finally show that, in the
Boolean case on unlabeled trees and unlabeled chains, only fragments with the
non-monotone operator π can express queries that are not equivalent to queries
of the form the height of the tree is at least k.

Our study of the relative expressive power of the downward fragments of
the navigational query languages on trees also has practical ramifications. If,
for example, two language fragments are equivalent, then this leads to a choice
in query language design. On the one hand, one can choose a smaller set of
operators that, due to its simplicity, is easier to implement and optimize, even
when dealing with big data in a distributed setting or when using specialized
hardware. On the other hand, a bigger set of operators allows for easier query
writing by the end users. Indeed, if one is only interested in Boolean queries
on unlabeled trees, then RPQs are much harder to evaluate than queries of the
form the height of the tree is at least k, although our results indicate that these
query languages are, in this case, equivalent. Moreover, all our collapse results
are constructive: we present ways to rewrite queries using operators such as
∩ and − into queries that do not rely on these operators. Hence, our results
can be used as a starting point for automatic query rewriting and optimization
techniques that, depending on the hardware, the data size, and the data type,
choose an appropriate query evaluation approach.

Organization. In Section 2, we introduce the basic notions and terminology used
throughout this paper. In Section 3, we present all basic results on the relative
expressive power of the downward navigational query languages, as well as some
generalizations of these. The results and their generalizations are visualized in
the Hasse diagrams of relative expressiveness shown in Figure 2. Observe that
these diagrams include collapses involving diversity and converse, which are
non-downward. In Section 4, we introduce condition automata and use them to
prove the redundancies involving intersection and difference shown in Figure 2.
In Section 5, we discuss related work. In Section 6, we summarize our findings
and propose directions for future work.
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Figure 2: Hasse diagrams that visualize the relative expressiveness of fragments of
N (π, π,∩,−, ∗), the downward navigational expressions. Each node represents a minimally
sized fragment and the superscripts on the left-hand side represent all maximally sized frag-
ments that are equivalent to the fragment represented by the node. Arrows represent strict
subsumption relations. Notice that equivalence of N (F1) and N (F2) does not imply equiva-
lence of N (F1 ∪{o}) and N (F2 ∪{o}). E.g. for path semantics on trees, N () and N (∩,−) are
equivalent, but N (π) and N (π,∩,−) are not equivalent.
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2. Preliminaries

We assume an infinitely enumerable set of labels Σ. Let Σ ⊆ Σ be a finite set
of labels, interpreted as edge labels. A graph over Σ is a triple G = (V,Σ,E),
with V a finite set of nodes and E : Σ → 2V×V a function mapping edge
labels to edge relations. A graph is unlabeled if |Σ| = 1. It is said that edge
(m,n) ∈

⋃
`∈Σ E(`) is an outgoing edge of m and an incoming edge of n. A path

of length k is a sequence n1`1n2 · · ·`knk+1 with n1, . . . , nk+1 ∈ V, `1, . . . , `k ∈ Σ,
and, for all 1 ≤ i ≤ k, (ni, ni+1) ∈ E (`j). A path n1 . . . nk+1 forms a cycle if
n1 = nk+1 and the path contains at least one edge. A graph is acyclic if there
are no cycles. A tree T = (V,Σ,E) is an acyclic graph in which exactly one
node, the root, has no incoming edges, and each other node has exactly one
incoming edge which belongs to exactly one edge relation. In other words, we
do not allow multi-labeled edges between two nodes in a tree. If (m,n) is an
edge in T , then node m is the parent of node n and node n is a child of node
m. A graph is a forest if it is the union of a set of disjoint trees. A chain is a
tree in which all nodes have at most one child.

Definition 2.1. Let Σ be a finite set of labels. The navigational expressions
over Σ are defined by the grammar

e := ∅ | id | di | ` | `a | πj [e] | πj [e] | [e ◦ e] | [e ∪ e] | [e ∩ e] | [e− e] | [e]∗,

in which ` ∈ Σ and j ∈ {1, 2}. Now, let G = (V,Σ,E) be a graph and let e be
an expression. The semantics of evaluation is defined as follows:

[[∅]]G = ∅; (empty set)

[[id]]G = {(m,m) | m ∈ V}; (identity)

[[di]]G = {(m,n) | m,n ∈ V ∧m 6= n}; (diversity)

[[`]]G = E (`) (edge label)

[[`a]]G = {(n,m) | (m,n) ∈ [[`]]G ; (edge label converse)

[[πj [e]]]G = {(m,m) | m ∈ [[e]]G |j}; (projection)

[[πj [e]]]G = [[id]]G − [[πj [e]]]G ; (coprojection)

[[ [e1 ◦ e2] ]]G = [[e1]]G ◦ [[e2]]G ; (composition)

[[ [e1 ∪ e2] ]]G = [[e1]]G ∪ [[e2]]G ; (union)

[[ [e1 ∩ e2] ]]G = [[e1]]G ∩ [[e2]]G ; (intersection)

[[ [e1 − e2] ]]G = [[e1]]G − [[e2]]G ; (difference)

[[[e]∗]]G =
⋃
i≥0 [[ei]]G , (Kleene-star)

with e0 = id and ek = e ◦ ek−1, and in which the composition R ◦ S of binary
relations R and S is defined by R ◦ S = {(m,n) | ∃z ((m, z) ∈ R ∧ (z, n) ∈ S)}.
If an expression always evaluates to a set of identical pairs, as is the case for id
and all projections and coprojections, then it is called a node expression.

We denote by NΣ the language of navigational expressions over Σ and by N
the language

⋃
Σ⊆Σ NΣ.
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We sometimes use the shorthand all = (id∪ di) and [e]+ = e ◦ [e]∗. Also, we
shall omit brackets whenever no ambiguity is possible (e.g., outer brackets or
brackets in a sequence of multiple compositions).

We write F ⊆ {di,a, π, π,∩,−, ∗} to denote a set of operators in which π
represents both π1 and π2 and, likewise, π represents both π1 and π2. Given
Σ, we denote by NΣ(F) the fragment of NΣ that only allows ∅, id, ` ∈ Σ, ◦, ∪,
and all operators in F. Also, we denote by N (F) the fragment of N defined as⋃

Σ⊆Σ NΣ(F).
Navigational expressions without diversity or converse, the ones we focus on

in this paper, can only inspect a tree downwards from ancestor to descendant.
To study this in more detail, we define the notions of downward expression
formally:

Definition 2.2. Let Σ be a finite set of labels. A navigational expression e
over Σ is downward if, for all trees T over Σ, and for all nodes m and n in V,
(m,n) ∈ [[e]]T only if m is an ancestor of n (i.e., there is a directed path from
m to n).3

Given Σ, we say that expressions e1 and e2 over Σ are path-equivalent,
denoted by e1 ≡path e2, if, for every graph G over Σ, [[e1]]G = [[e2]]G , and
are Boolean-equivalent, denoted by e1 ≡bool e2, if, for every graph G over Σ,
[[e1]]G = ∅ if and only if [[e2]]G = ∅. Let sem ∈ {path,bool}. We say that the
class of expressions L1 is sem-subsumed by the class of expressions L2, denoted
by L1 �sem L2, if every expression in L1 is sem-equivalent to an expression
in L2. We say that L1 and L2 are sem-equivalent, denoted by L1 ≡sem L2, if
L1 �sem L2 and L2 �sem L1.

We may also consider path equivalence or Boolean equivalence with respect
to trees or chains by only allowing trees or chains instead of general graphs in
the above definitions. Similarly, we may consider path equivalence or Boolean
equivalence of classes of expressions on labeled or unlabeled structures. The
first case coincides with the standard definition above, while in the second case
we restrict ourselves to the expressions that are defined over a set of labels
Σ with |Σ| = 1 (and, hence, also to unlabeled graphs when evaluating their
equivalence). By combining these two ways of specializing path equivalence or
Boolean equivalence, we may speak, e.g., about path equivalence and Boolean
equivalence with respect to labeled chains or unlabeled trees.

3We do not require m to be a strict ancestor of n: there is always a directed path of length
0 from a node to itself. Hence, m and n can be the same node.
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Several operators can be expressed in terms of the other operators [18]:

π1[e] = π2[[e]−1] = πj [π1[e]] = (e ◦ [e]−1) ∩ id = (e ◦ all) ∩ id;

π2[e] = π1[[e]−1] = πj [π2[e]] = ([e]−1 ◦ e) ∩ id = (all ◦ e) ∩ id;

π1[e] = π2[[e]−1] = id− π1[e];

π2[e] = π1[[e]−1] = id− π2[e];

e1 ∩ e2 = e1 − (e1 − e2),

in which −1 denotes converse at the expression level,4 and with j ∈ {1, 2}. Let
F ⊆ {di,a, π, π,∩,−, ∗}. By F we denote the set of operators obtained from F

by adding operators to F that can be expressed using the operators already in
F using the above rules.

We conclude these preliminaries with some established results that will be
used throughout this work:

Proposition 2.3 (Fletcher et al. [18]). Let L1 and L2 be query languages.

1. If L1 �path L2, then L1 �bool L2;

2. If L1 �bool L2, then L1 �path L2.

Besides carrying over results between Boolean and path queries, we can also
carry over results between types of graphs.

Proposition 2.4. Let sem ∈ {path,bool}, let L1 and L2 be query languages,
and let C1 and C2 be classes of graphs such that C1 is a subclass of C2.

1. If L1 �sem L2 on C2, then L1 �sem L2 on C1;

2. If L1 �sem L2 on C1, then L1 �sem L2 on C2.

unlabeled chain

labeled chain

unlabeled tree

labeled tree

unlabeled graph

labeled graph

Figure 3: The various classes of graphs on which relationships in the expressive power of
navigational query languages is studied. The arrows between classes define is-a relationships.

We often use Proposition 2.3, Proposition 2.4, and the subclass relations
of Figure 3 implicitly to carry over results between different semantics and/or
various classes of graphs.

4By pushing down converse through the expression to the level of labels, we can always
express this more general notion of converse in terms of the edge label converse operator a of
Definition 2.1.
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3. Basic results on relative expressive power

In this section, we present all basic results on the relative expressive power
of the downward navigational query languages. We divide our results into four
categories, based on the techniques used to prove them. Section 3.1 provides
all the results obtained directly using downward-based arguments. Section 3.2
provides all the results obtained using branching-based arguments. Section 3.3
provides all the results obtained using homomorphisms. These include a major
collapse result for Boolean queries on unlabeled trees and unlabeled chains.
Finally, Section 3.4 uses the relation between the navigational query languages
and first-order logic to prove some expressiveness results involving transitive
closure. Combined with the results of Section 4, where we show that intersection
never adds expressive power while difference only adds limited expressive power
in some cases, these results demonstrate

Theorem 3.1. Let F1,F2 ⊆ {π, π,∩,−, ∗}. We have N (F1) �bool N (F2),
respectively N (F1) �path N (F2), on unlabeled chains, respectively labeled chains,
unlabeled trees, or labeled trees if and only if there exists a directed path from
F1 to F2 in the corresponding Hasse diagram of Figure 2.

We start with our results obtained from downward-based arguments.

3.1. Results using the notion of downward querying

A straightforward induction on the length of expressions yields the following:

Proposition 3.2. Let F ⊆ {π, π,∩,−, ∗}. Every expression in N (F) is down-
ward.

The queries di and `a (with ` any edge label) are not downward. We derive

Corollary 3.3. Let F ⊆ {π, π,∩,−, ∗}. Already on unlabeled chains, we have
N (di) �path N (F) and N (a) �path N (F).

For downward languages that cannot express π, one can easily verify that
these languages cannot be used to select individual nodes in a chain. Hence, we
have the following:

Proposition 3.4. Let F ⊆ {∗}. Already on unlabeled chains, we have N (π) �path

N (F).

Proof. Let Σ = {`}, and let C = (V,Σ,E) be a chain with |V| = 3. On C, the
expression π1[` ◦ `] over Σ yields {(r, r)}, with r the root of the chain. It is
straightforward to verify that no expression in NΣ(∗) yields a single identical
node-pair on C. Hence, no expression in NΣ(∗) is path-equivalent to π1[`◦`].
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T : `1 `2

Figure 4: A tree with two labeled branches.

3.2. Detecting branches

The obvious way to detect whether or not a tree is a chain is by detecting
whether some node has several children. This is particularly easy when these
children are connected to their parent using distinct edge labels. Next, we show
that the most basic language is not capable of detecting labeled branching.

Lemma 3.5. Let Σ be a finite set of labels, and let e be an expression in NΣ(∗).
If there exists a tree T over Σ such that [[e]]T 6= ∅, then there exists a chain C
over Σ such that [[e]]C 6= ∅.

Proof. Let T = (V,Σ,E) be a tree for which [[e]]T 6= ∅. As T is given, there
clearly exists a ∗-free expression e′ over Σ for which [[e]]T = [[e′]]T . We write
e′ as a union of ∪-free expressions. Since [[e]]T 6= ∅, this union must contain a
∪-free expression e′′ for which [[e′′]]T 6= ∅. If e′′ ≡path id, then a chain C with a
single node suffices. Else, e′′ can be written as the composition of edge labels
`1 ◦ . . . ◦ `k. In this case, a chain C representing the path n1 `1 n2 . . . ni `k nk+1

suffices.

In contrast, most other languages are able to detect labeled branching, as
shown next.

Proposition 3.6. Let F ⊆ {di,a, π, π,∩,−, ∗}. If π ∈ F or a ∈ F, then,
already on labeled trees, we have N (F) �bool N (∗).

Proof. Let Σ be a finite set of labels, and let `1, `2 ∈ Σ. Consider the expressions
e1 = `1

a ◦ `2 and e2 = π1[`1] ◦ π1[`2] over Σ, which are Boolean-equivalent.
Clearly, for any tree T ′ over Σ, we have [[ei]]T ′ 6= ∅, i ∈ {1, 2}, only if T ′ has
a node with at least two children, one reachable via an edge labeled `1 and
another via an edge labeled `2. Hence, for the tree T over Σ of Figure 4, we
have [[ei]]T 6= ∅ and for all chains C′ over Σ, we have [[ei]]C′ = ∅. Let e be any
expression in NΣ(∗) with [[e]]T 6= ∅. By Lemma 3.5, there exists a chain C over
Σ with [[e]]C 6= ∅. Hence, e is not Boolean-equivalent to ei, and we conclude that
NΣ(∗) cannot express ei.

3.3. Results using homomorphisms

Only coprojection and difference provide a form of negation. As a conse-
quence, all fragments of N that do not include these two operators are mono-
tone.

Definition 3.7. Let Σ be a finite set of labels. An expression e over Σ is
monotone if, for every graph G over Σ and every graph G′ over Σ obtained by
adding nodes and/or edges to G, we have [[e]]G ⊆ [[e]]G′ .

10



Monotonicity puts obvious limits on the expressive power of a query lan-
guage: a monotone query can never put upper bounds on the size of a graph.
We can, however, derive stronger results on the limitations of query languages
by considering closure results under homomorphisms:

Definition 3.8. Let L be a class of expressions and F a class of functions. We
say that L is closed under F if, for every pair of graphs G1 = (V1,Σ,E1) and
G2 = (V2,Σ,E2) over the same set of labels Σ, every expression e over Σ in
L, and every function f ∈ F mapping V1 into V2, we have that (m,n) ∈ [[e]]G1
implies (f(m), f(n)) ∈ [[e]]G2 .

Such a mapping f is called a homomorphism from G1 to G2 if, for every pair of
nodes m,n ∈ V1 and every edge label ` ∈ Σ, we have that (m,n) ∈ E1 (`) implies
(h(m), h(n)) ∈ E2 (`). It is called an injective homomorphism if, moreover, for
all m,n ∈ V1, n 6= m implies h(n) 6= h(m).

Observe that diversity is a form of inequality. Hence, via a straightforward
induction on the structure of expressions, we can show that the fragments of
N that cannot express coprojection are closed under injective homomorphisms,
whereas the languages that can express coprojections are not closed under injec-
tive homomorphisms. Additionally, we can show that the fragments of N that
do not use diversity and cannot express coprojection are closed under arbitrary
homomorphisms.

Lemma 3.9. Let F ⊆ {di,a, π,∩, ∗}.
1. N (F) is closed under injective homomorphisms.
2. If di /∈ F, then N (F) is closed under homomorphisms.

We use the above to show that the Boolean expressive power of the monotone
query languages we consider is very limited.

Lemma 3.10. Let Σ = {`}, and let F ⊆ {di,a, π,∩, ∗}.
1. Let e be an expression in NΣ(F). If e 6≡path ∅ on chains, then there exists
k ≥ 0 such that e ≡bool `

k on chains.
2. Let e be an expression in NΣ(F − {di}). If e 6≡path ∅ on trees, then there

exists k ≥ 0 such that e ≡bool `
k on trees.

Proof. In the following, we write ‖m → n‖T , for node m an ancestor of node
n in tree T , to denote the distance between m and n. We write depth(T ) to
denote the depth of tree T , which is the maximum distance of the root node of
T to any leaf node.

1. Let e be an expression in NΣ(F), and let C be the chain over Σ with
minimal depth for which [[e]]C 6= ∅. Let C′ be any chain over Σ with
depth(C′) ≥ depth(C), and let r and r′ be the root nodes of C and C′,
respectively. The function h that maps node z in C to the node z′ in C′
with ‖r → z‖C = ‖r′ → z′‖C′ is an injective homomorphism. Hence, by
Lemma 3.9, [[e]]C 6= ∅ implies [[e]]C′ 6= ∅. Observe that [[`depth(C)]]C 6= ∅
and that C is the smallest chain for which this holds. Since depth(C′) ≥
depth(C), we also have [[`depth(C)]]C′ 6= ∅.

11



2. Let e be an expression in NΣ(F − {di}) and let T be an tree over Σ with
[[e]]T 6= ∅. Let C′ be the chain over Σ with depth(T ) = depth(C′) and let
r and r′ be the root nodes of T and C′, respectively. The function h that
maps every node z in T to the node z′ in C′ with ‖r → z‖T = ‖r′ → z′‖C′
is a homomorphism. Hence, by Lemma 3.9, [[e]]T 6= ∅ implies [[e]]C′ 6= ∅.
Since e satisfies all conditions of Statement 1, there exists k, 0 ≤ k ≤
depth(T ), for which e ≡bool `

k on chains. Finally, we have [[`k]]C′ 6= ∅
implies [[e]]T 6= ∅ by Lemma 3.9, as one can construct a homomorphism
from C′ to the longest path in T .

Lemma 3.10 has significant consequences for the expressive power of Boolean
queries in N (di,a, π,∩, ∗) and N (a, π,∩, ∗).

Corollary 3.11.

1. On unlabeled chains, we have N (di,a, π,∩, ∗) �bool N ().

2. On unlabeled trees, we have N (a, π,∩, ∗) �bool N ().

Finally, we use Lemma 3.10 to conclude the following:

Theorem 3.12. Already on unlabeled chains, we have N (π) �bool N (di,a, π,∩, ∗).

Proof. Let Σ = {`}. Consider the expression e = π2[`] ◦ ` ◦ π1[`] over Σ.
Expression e evaluates to true on a chain over Σ if and only if this chain consists
of exactly one edge. Hence, if C1 is the chain over Σ with depth(C1) = 1 and C2
is the chain over Σ with depth(C2) = 2, then [[e]]C1 6= ∅ and [[e]]C2 = ∅. For every
expression e′ in NΣ(di,a, π,∩, ∗), however, [[e′]]C1 6= ∅ implies [[e′]]C2 6= ∅ by
monotonicity. Hence, no expression in NΣ(di,a, π,∩, ∗) is Boolean-equivalent
to e.

3.4. Results using first-order logic

The navigational expressions without the Kleene-star (N (di,a, π, π,∩,−))
are path-equivalent to Tarski’s calculus of relations. It is well-known that
Tarski’s calculus of relations is path-equivalent to FO[3] [15, 16], the fragment of
first-order logic in which formulae use at most three variables. There are several
well-known bounds on the expressive power of such first-order queries [26]. In
particular, the transitive closure of a binary relation cannot be expressed, even
if the binary relation represents a chain. Hence,

Proposition 3.13. Already on unlabeled chains, we have N (∗) �path N (di,a, π, π,∩,−).

With respect to Boolean queries on unlabeled trees and chains, Corollary 3.11
already showed that, in many cases, the Kleene-star does not add expressive
power. Next, we exhibit the cases in which the Kleene-star does add expressive
power to Boolean queries.

Proposition 3.14. Let F ⊆ {π, π,∩,−}.

1. Already on labeled chains, we have N (∗) �bool N (F).

12



s t

Figure 5: An acyclic directed graph, which is not a chain, a tree, or a forest. Observe that
`3 ∩ `7 returns the node pair (s, t).

2. Already on unlabeled chains, we have N (π, ∗) �bool N (F).

Proof. Consider the expression `1 ◦ [`2 ◦ `2]∗ ◦ `1 over Σ = {`1, `2}. On a chain
over Σ, this expression evaluates to true if and only if two there is an even-
length path of `2-labeled edges between two subsequent `1-labeled edges. Next,
consider the expression π2[`] ◦ [` ◦ `]∗ ◦ π1[`] over Σ = {`}. On a chain over Σ,
this expression evaluates to true if and only the chain has even length. The
result now follows from the observation that the even-query is not first-order
definable [26].

4. Redundancy of intersection and difference

In the following, we will prove that intersection and difference are redundant
in downward navigational expressions. To do so, we will borrow concepts from
the theory of finite automata.

Observe that queries in N (∗) select pairs of nodes m,n such that there exists
a directed path from m to n whose labeling satisfies some regular expression.
In the case of trees, this directed path is unique, which yields a strong connec-
tion between N (∗) and the closure results under intersection and difference for
regular languages [25]. As a consequence, we can show, in a relatively straight-
forward way, that N (∩,−, ∗) �path N (∗).

Example 4.1. Let Σ = {`}. We can rewrite the expressions [`3]+ ∩ [`7]+ and
[`3]+− [`7]+ over Σ to path-equivalent expressions that use neither intersection
nor difference:

[`3]+ ∩ [`7]+ = [`21]+;

[`3]+ − [`7]+ =
(
`3 ∪ `6 ∪ `9 ∪ `12 ∪ `15 ∪ `18

)
◦ [`21]∗.

Notice that this rewriting does not work on arbitrary graphs. Indeed, on the
graph G in Figure 5, we have [[[`3]+ ∩ [`7]+]]G 6= ∅, whereas [[[`21]+]]G = ∅.

For regular expressions, the closure results under intersection and difference
are usually obtained by first proving that regular expressions have the same
expressive power as finite automata, and then proving that finite automata
are closed under intersection and difference. We extend these automata-based
techniques to the languages N (F) with F ⊆ {π, π, ∗} by introducing conditions
on automaton states. We use these extended automata to prove that, on trees,
N (F) is closed under intersection and N (F) is closed under difference.

First, in Section 4.1, we introduce condition automata. Then, in Section 4.2,
we show that specific classes of condition automata describe specific fragments
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of the downward navigational expressions that we study. In Section 4.3, we
develop techniques to make condition automata id-transition-free (which re-
sembles removing empty-string-transitions from finite automata) and use these
id-transition-free condition automata to show that, on labeled trees, condition
automata are closed under intersection. In Section 4.4, we develop techniques to
make condition automata deterministic (which resembles the translation from
non-deterministic to deterministic finite automata) and use these determinis-
tic condition automata to show that, on labeled trees, condition automata are
closed under difference. In Section 4.5, we use these closure results to prove
the cases in which either intersection or difference are redundant. Finally, in
Section 4.6, we use condition automata to show the redundancy of projection
in Boolean queries on chains.

4.1. Condition automata

The conditions we consider are node expressions of the form ∅, id, π1[e],
π2[e], π1[e], or π2[e].

Definition 4.2. Let Σ ⊆ Σ be a finite set of labels, interpreted as transition
labels. A condition automaton over Σ is a 7-tuple A = (S,Σ, C, I, F, δ, γ), where
S is a finite set of states, C a finite set of conditions over Σ, I ⊆ S a set of
initial states, F ⊆ S a set of final states, δ ⊆ S × (Σ ∪ {id})× S the transition
relation, and γ ⊆ S × C the state-condition relation. For a state q ∈ S, we
denote γ(q) = {c | (q, c) ∈ γ}.

Let F ⊆ {π, π, ∗}. We say that A is F-free if every condition in C is an
expression in NΣ({π, π, ∗}−F), we say that A is acyclic if the transition relation
δ of A is acyclic (viewed as a labeled graph relation), and we say that A is id-
transition-free if δ ⊆ S × Σ× S.

Example 4.3. Consider the condition automaton A = (S,Σ, C, I, F, δ, γ) with

S = {q1, q2, q3, q4};
Σ = {`1, `2, `3};
C = {id, π2[`1

2], π1[`2
3]};

I = {q1, q4};
F = {q3, q4};
δ = {(q1, `1, q2), (q1, `3, q4), (q2, `1, q2), (q2, `2, q3)};
γ = {(q1, id), (q2, π1[`1

2]), (q2, π2[`2
3])}.

This automaton is visualized in Figure 6. We note that states q3 and q4 do
not have any conditions associated with them, which is visualized via a labeling
{ }, representing an empty set of conditions. Using this visualization, it is easy
to verify that the condition automaton is not acyclic (due to the `1-labeled
self-loop), is {π, ∗}-free, and is id-transition-free.

Observe that condition automata are strongly related to finite automata,
the main difference being that states in the automata have a set of conditions
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Figure 6: An example of a condition automaton.

associated to them. In the evaluation of condition automata on trees, this set
of conditions determines in which tree nodes a state can hold, which we define
next.

Definition 4.4. Let Σ be a finite set of labels, let G = (V,Σ,E) be a graph
over Σ, let A = (S,Σ, C, I, F, δ, γ) be a condition automaton, and let q ∈ S.
We define the condition expression conditions(q) of q as the node expression
conditions(q) = e1 ◦ . . . ◦ ek if γ(q) = {e1, . . . ek}, k ≥ 1, and conditions(q) = id
if γ(q) = ∅.5

We say that a node n ∈ V satisfies state q ∈ S if (n, n) ∈ [[conditions(q)]]G .
A run of A on G is a sequence (q0, n0) `0 (q1, n1) `1 . . . (qi−1, ni−1) `i−1 (qi, ni),
where q0, . . . , qi ∈ S, n0, . . . , ni ∈ V, `0, . . . , `i−1 ∈ Σ ∪ {id}, and the following
conditions hold:

1. for all 0 ≤ j ≤ i, nj satisfies qj ;

2. for all 0 ≤ j < i, (qj , `j , qj+1) ∈ δ; and

3. for all 0 ≤ j < i, (nj , nj+1) ∈ [[`j ]]G .

We say that A accepts node pair (m,n) ∈ V×V if there exists a run (q0,m)`0
. . . (qi, n) of A on G with q0 ∈ I and qi ∈ F . We define the evaluation of A on
G, denoted by [[A]]G , as [[A]]G = {(m,n) | A accepts (m,n)}.

Example 4.5. Consider the condition automaton of Example 4.3, shown in Fig-
ure 6, and the tree T shown in Figure 7. Both are defined over Σ = {`1, `2, `3}.
For this combination of a condition automaton and a tree, we can construct sev-
eral accepting runs. Examples are the run (q1, r) `3 (q4,m), which semantically
implies

(r,m) ∈ [[conditions(q1) ◦ `3 ◦ conditions(q4)]]T = [[id ◦ `3 ◦ id]]T ,

5Observe that if γ(q) = {e1, . . . , ek}, ≥ 1, then conditions(q) ≡path e1∩· · ·∩ek, i.e., all the
conditions γ(q) are enforced by conditions(q), which is what we intended. However, it is more
convenient to work with compositions than intersections, hence our definition. If γ(q) = ∅,
then no restrictive conditions hold on state q, explaining why we have set conditions(q) = id
in this case.
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Figure 7: A labeled tree in which six distinct nodes are named.

Table 1: Fragments of the navigational expressions and corresponding classes of condition
automata.

Navigational expressions Class of condition automata

N () {π, π, ∗}-free and acyclic.
N (π) {π, ∗}-free and acyclic.
N (π, π) {∗}-free and acyclic.
N (∗) {π, π}-free.
N (π, ∗) {π}-free.
N (π, π, ∗) no restrictions.

and (q1, n1) `1 (q2, n2) `1 (q2, n3) `2 (q3, n4), which semantically implies

(n1, n4) ∈ [[conditions(q1) ◦ `1 ◦ conditions(q2) ◦ `1 ◦
conditions(q2) ◦ `2 ◦ conditions(q3)]]T =

[[id ◦ `1 ◦ π2[`1
2] ◦ π1[`2

3] ◦ `1 ◦ π2[`1
2] ◦ π1[`2

3] ◦ `2 ◦ id]]T .

4.2. Condition automata and downward queries

Given a finite set of labels Σ, we can evaluate a condition automaton over
Σ on a graph over Σ to a set of node pairs of that graphs. Hence, we can
extend the notions of path equivalence and Boolean equivalence of navigational
expressions to equivalences of condition automata and navigational expressions.
In a similar vein, both equivalence notions can be bootstrapped to fragments of
the navigational expressions or classes of condition automata, possibly restricted
to a subset of all graphs, e.g., labeled trees or unlabeled chains.

Our first goal is to show path equivalence on labeled trees of N (F), F ⊆
{π, π, ∗}, with the corresponding class of condition automata shown in Table 1.

Example 4.6. Consider the condition automaton of Example 4.3, shown in Fig-
ure 6. By carefully examining the automaton, one can conclude that, on labeled
graphs, it is path-equivalent to the expression (`1 ◦π2[`1

2]◦π1[`2
3]◦ [`1 ◦π2[`1

2]◦
π1[`2

3]]∗ ◦ `2) ∪ `3 ∪ id over Σ = {`1, `2, `3}.
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Table 2: Basic building blocks used by the translation from expressions to condition automata.
In the table, ` is an edge label.

Expression Condition automaton

∅ A = ({v, w},Σ, ∅, {v}, {w}, ∅, ∅)
id A = ({v, w},Σ, ∅, {v}, {w}, {(v, id, w)}, ∅)
` A = ({v, w},Σ, ∅, {v}, {w}, {(v, `, w)}, ∅)
π1[e] A = ({v},Σ, {π1[e]}, {v}, {v}, ∅, {(v, π1[e])})
π2[e] A = ({v},Σ, {π2[e]}, {v}, {v}, ∅, {(v, π2[e])})
π1[e] A = ({v},Σ, {π1[e]}, {v}, {v}, ∅, {(v, π1[e])})
π2[e] A = ({v},Σ, {π2[e]}, {v}, {v}, ∅, {(v, π2[e])})

To show the path equivalences proposed in Table 1, we first adapt standard
closure properties for finite automata under composition, union, and Kleene-
plus to the setting of condition automata:

Proposition 4.7. Let Σ be a finite set of labels, let F ⊆ {π, π, ∗}, and let
A1 and A2 be F-free condition automata over Σ. There exists F-free condition
automata A◦, A∪, and A+ over Σ such that, for every graph G over Σ, [[A◦]]G =
[[A1]]G ◦ [[A2]]G, [[A∪]]G = [[A1]]G ∪ [[A2]]G, and [[A+]]G = [[[A1]]G ]+. Moreover, A◦
and A∪ are acyclic whenever A1 and A2 are acyclic.

Proof. Let A1 = (S1,Σ, C1, I1, F1, δ1, γ1) and A2 = (S2,Σ, C2, I2, F2, δ2, γ2).
Without loss of generality, we may assume that S1∩S2 = ∅. We define A◦, A∪,
and A+ as follows:

1. A◦ = (S1 ∪ S2,Σ, C1 ∪ C2, I1, F2, δ1 ∪ δ2 ∪ δ◦, γ1 ∪ γ2), in which δ◦ =
{(q1, id, q2) | (q1 ∈ F1) ∧ (q2 ∈ I2)}.

2. A∪ = (S1 ∪ S2,Σ, C1 ∪ C2, I1 ∪ I2, F1 ∪ F2, δ1 ∪ δ2, γ1 ∪ γ2).

3. A+ = (S1 ∪ {v, w},Σ, C1, {v}, {w}, δ1 ∪ δ+, γ1), in which v, w /∈ S1 are
two distinct fresh states and δ+ = {(v, id, q) | q ∈ I1} ∪ {(q, id, w) | q ∈
F1} ∪ {(w, id, v)}.

It is straightforward to see that A◦, A∪, and A+ satisfy the requirements of the
Proposition.

We can translate navigational expressions to condition automata in a recur-
sive manner. The base cases are the atomic and node expressions described in
Table 2. The recursive cases are compositions, unions, and transitive closures,
for which we use the closure results of Proposition 4.7 in a straightforward
manner. We conclude

Proposition 4.8. Let Σ be a finite set of labels, and let F ⊆ {π, π, ∗}. On
labeled graphs, every expression in NΣ(F) is path-equivalent to some condition
automaton over Σ in the class specified for N (F) in Table 1.

Finally, to show the converse, we adapt the translation of finite automata to
regular expressions to the setting of condition automata.
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Proposition 4.9. Let Σ be a finite set of labels, and let F ⊆ {π, π, ∗}. On
labeled graphs, every condition automaton over Σ in the class specified for N (F)
in Table 1 is path-equivalent to some expression in NΣ(F).

Proof. In the usual translation from finite automata to regular expressions con-
sists of three steps [25]. First, the finite automaton is translated to a generalized
transition graph in which each transition is a regular expression. Then, the gen-
eralized transition graph is reduced by removing states and replacing them by
more complicated transitions. Finally, the reduced generalized transition graph
has a single regular expression between initial and final state, which is the result
of the translation.

For our purpose, we only need to add to the above the ability to deal with
conditions. Let A = (S,Σ, C, I, F, δ, γ) be a condition automaton. As a first
step, we translate this condition automaton to a generalized transition graph
in which each transition is an expression in NΣ(F). We do so by translating
each transition (p, `, q) to the expression conditions(p) ◦ ` ◦ conditions(q). Next,
we follow the standard procedure to reduce the generalized transition graph
to an expression. To verify that the resulting expression is in NΣ(F), we only
need to observe that the standard procedure to translate a generalized transition
graph to a regular expression only uses composition (concatenation), union, and
Kleene-star. The Kleene-star is only introduced when the transition graph is
cyclic.

Notice that we not only proved path equivalence between classes of condition
automata and classes of the expressions on general labeled graphs, but also
provided constructive algorithms to translate between these classes.

4.3. Closure under intersection

In the following, we work towards showing that condition automata, when
used as queries on trees, are not only closed under ◦, ∪, and ∗, as Proposition 4.7
shows, but also under ∩ and −. We then use this closure result to remove ∩
and − from expressions that are used to query trees. The standard approach
to constructing the intersection of two finite automata is by making their cross-
product. In a fairly straightforward manner, we can apply a similar cross-
product construction to condition automata, given that they are id-transition-
free. Observe that the id-labeled transitions fulfill a similar role as empty-string-
transitions in finite automata and, as such, can be removed. To do so, we first
introduce the notion of identity pairs.

Definition 4.10. Let A = (S,Σ, C, I, F, δ, γ) be a condition automaton and
q id q1 · · · id qj be a path in A. We say that the pair (q, {q, q1, . . . , qj}) is an
identity pair of A.

Example 4.11. In Figure 8 two condition automata are shown. Observe that the
condition automaton on the left has id-transitions. The id-transition-free condi-
tion automaton on the right is obtained from it by applying the construction of
Lemma 4.12, below. The main step in this process is obtaining the identity pairs,
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Figure 8: Two path-equivalent condition automata. Only the one on the right is id-transition-
free.

as these are the states of the constructed condition automaton. The original
condition automaton has the following paths consisting of identity-transitions
only:

u, v, w, u id v, v id w, u id v id w,

resulting in the identity pairs (u, {u}), (v, {v}), and (w, {w}), the identity pairs
(u, {u, v}) and (v, {v, w}), and the identity pair (u, {u, v, w}), which are the
states of the constructed condition automaton on the right.

Next, we formally prove that id-transitions can be eliminated by generalizing
Example 4.11:

Lemma 4.12. Let Σ be a finite set of labels, let F ⊆ {π, π, ∗}, and let A
be an F-free condition automaton over Σ. On labeled graphs, there exists an
id-transition-free and F-free condition automaton Anoid over Σ that is path-
equivalent to A. Moreover, Anoid is acyclic whenever A is acyclic.

Proof. Let A = (S,Σ, C, I, F, δ, γ). Note that we cannot simply use finite au-
tomata techniques to remove id transitions in the same way as empty-word
transitions can be removed [25], as we also have to keep track of any ad-
ditional state conditions implied by id transitions. We construct Anoid =
(Snoid,Σ, C, Inoid, Fnoid, δnoid, γnoid) with

Snoid = {(q,Q) | Q ⊆ S and (q,Q) is an identity pair of A};
Inoid = {(q,Q) | ((q,Q) ∈ Snoid) ∧ (q ∈ I)};
Fnoid = {(q,Q) | ((q,Q) ∈ Snoid) ∧ (Q ∩ F 6= ∅)};
δnoid = {((p, P ), `, (q,Q)) | ((p, P ) ∈ Snoid) ∧ (` ∈ Σ) ∧

((q,Q) ∈ Snoid) ∧ (∃p′ (p′ ∈ P ) ∧ (p′, `, q) ∈ δ)};
γnoid = {((q,Q), c) | ((q,Q) ∈ Snoid) ∧ (∃q′ (q′ ∈ Q) ∧ (c ∈ γ(q′)))}.

Let G be a graph over Σ. By a straightforward induction on the lengths of runs
in A and Anoid, one can prove that [[Anoid]]G = [[A]]G .
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We now proceed with showing that condition automata, when used to query
trees as opposed to general labeled graphs, are closed under intersection. We
already know from Example 4.1 that, on general graphs, standard automata-
techniques cannot be adapted to obtain these closure results. On trees, however,
the situation of Example 4.1 cannot occur, as a directed path between two nodes
in a tree is always unique. This observation is crucial in showing that the cross-
product construction on condition automata works for querying trees. The
lemma below formalizes this observation:

Lemma 4.13. Let Σ be a finite set of labels, let A1 and A2 be id-transition-
free condition automata over Σ, and let T be a tree over Σ. If there exists
a run r1 = (p1, n1) `11 · · · `1i1 (q1, ni1+1) of A1 on T and there exists a run
r2 = (p2,m1) `21 · · · `2i2 (q2,mi2+1) of A2 on T with n1 = m1 and ni1+1 = mi2+1,
then i1 = i2 = i and, for all 1 ≤ j ≤ i, `1j = `2j and nj = mj.

Proof. Let s = n1 = m1 and t = ni1+1 = mi2+1. By the semantics of condition
automata, the existence of run r1 implies that (s, t) ∈ [[`11 ◦ . . . ◦ `1i1 ]]T and the
existence of run r2 implies that (s, t) ∈ [[`21 ◦ . . . ◦ `2i2 ]]T . Since A1 and A2 are
id-transition-free, every `1j1 and every `2j2 , with 1 ≤ j1 ≤ i1 and 1 ≤ j2 ≤ i2, is
an edge label. As A1 and A2 are evaluated on a tree T , there is only a single
downward path from node s to node t. Hence, the two runs must traverse the
same path, and follow the same edge labels. We conclude that i1 = i2 = i and,
for all 1 ≤ j ≤ i, `1j = `2j .

This allows us to prove the following:

Proposition 4.14. Let Σ be a finite set of labels, let F ⊆ {π, π, ∗} and let A1

and A2 be F-free condition automata over Σ. There exists an F-free condition
automaton A∩ over Σ such that, for every tree T over Σ, we have [[A∩]]T =
[[A1]]T ∩ [[A2]]T . The condition automaton A∩ is acyclic whenever A1 or A2 is
acyclic.

Proof. Let A1 = (S1,Σ, C1, I1, F1, δ1, γ1) and A2 = (S2,Σ, C2, I2, F2, δ2, γ2). By
Lemma 4.12, we assume that A1 and A2 are id-transition-free. We construct
A∩ = (S1 × S2,Σ, C1 ∪ C2, I1 × I2, F1 × F2, δ∩, γ∩) where

δ∩ = {((p1, q1), `, (p2, q2)) | (p1, `, p2) ∈ δ1 ∧ (q1, `, q2) ∈ δ2};
γ∩ = {((p, q), c) | (p, c) ∈ γ1 ∨ (q, c) ∈ γ2}.

Let T be a tree over Σ and let m,n be a pair of nodes of T . We have (m,n) ∈
[[A1]]T ∩ [[A2]]T if and only if there exists a run (p1,m) `11 · · · `1i1 (q1, n) of A1 on
T with p1 ∈ I1 and q1 ∈ F1 and a run (p2,m) `21 · · · `2i2 (q2, n) of A2 on T with
p2 ∈ I2 and q2 ∈ F2. Since A1 and A2 are id-transition-free, by Lemma 4.13,
and by the construction of A∩, these runs exist if and only if there exists a
run ((p1, p2),m) `1 · · · `i ((q1, q2), n) of A∩ on T with (p1, p2) ∈ I1 × I2 and
(q1, q2) ∈ F1 × F2. Hence, we conclude (m,n) ∈ [[A∩]]T . Observe that we did
not add new condition expressions to the set of condition expressions in the
proposed constructions. Hence, we conclude that A∩ is F-free whenever A1 and
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A2 are F-free. We also observe that every run r of A∩ on T can be split into
runs of A1 and A2 on tree T of the same length as r. Hence, there can only be
loops in A∩ if both A1 and A2 have loops and we conclude that A∩ is acyclic
whenever A1 or A2 is acyclic.

4.4. Closure under difference

Next, we show that condition automata, when used as tree queries, are also
closed under difference. Usually, the difference of two finite automata A1 and
A2 is obtained by first constructing the complement of A2, and then construct-
ing the intersection of A1 with the resulting automaton. We cannot use such a
complement construction for condition automata: the complement of a down-
ward binary relation (represented by a condition automaton when evaluated on
a tree) is not a downward binary relation. Observe, however, that it is not
necessary to consider the full complement for this purpose: since the difference
of two downward binary relations is itself a downward relation, we can restrict
ourselves to the downward complement of a binary relation.

Definition 4.15. Let T = (V,Σ,E) be a tree. We define the downward com-
plement of a binary relation R ⊆ V × V, denoted by R↓, as

R↓ = {(m,n) | (m,n) /∈ R ∧m is an ancestor of n in T }.

If A1 and A2 are condition automata and T is a tree, all over the same finite
set of labels, then we have [[A1]]T − [[A2]]T ≡ [[A1]]T ∩ [[A2]]T ↓. Hence, we only
need to show that condition automata are closed under downward complement.
Recall that finite automata are closed under complement and the complement of
an automaton can easily be constructed if the automaton is deterministic [25].
For the construction of the downward complement of a condition automaton,
we introduce a notion similar to deterministic finite automata.

Definition 4.16. The condition automaton A = (S,Σ, C, I, F, δ, γ) is deter-
ministic if it is id-transition-free and if it satisfies the following condition: for
every tree T over Σ and for every pair of nodes m,n of T with m an ancestor
of n, there exists exactly one run (q,m) ` . . . (p, n) of A on T with q ∈ I.

We observe that if the condition automaton does not specify any conditions,
then Definition 4.16 reduces to the classical definition of a deterministic finite
automaton. Moreover, the definition of a deterministic condition automaton
relies on the automaton being evaluated on trees, as more general graphs can
have several identically-labeled paths between pairs of nodes.

Example 4.17. The condition automaton in Figure 6 is clearly not deterministic:
runs of a single state can already start at two distinct initial states. In Figure 9
we exhibit a conditional automaton over Σ = {`1, `2} that is deterministic.
This deterministic condition automaton accepts node pairs (m,n), m 6= n, if m
satisfies π2[`1

3] and if there exists a path from m to n whose labeling matches
the regular expression `1[`2]∗`1. It also accepts node pairs (n, n) if n does not
satisfy π2[`1

3].
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Figure 9: An example of a deterministic condition automaton.

In the construction of deterministic condition automata we use the condition
complement of a condition e, denoted by ccompl(e), and defined as follows:

ccompl(e) =


∅ if e = id;

id if e = ∅;
πj [e

′] if e = πj [e
′], j ∈ {1, 2};

πj [e
′] if e = πj [e

′], j ∈ {1, 2}.

Observe that the condition complement of a projection expression is a co-
projection expression, and vice-versa. If S is a set of conditions, then we use
the notation ccompl(S) to denote the set {ccompl(c) | c ∈ S}.

Lemma 4.18. Let Σ be a finite set of edge labels, let F ⊆ {π, π, ∗}, and let A
be an F-free condition automaton over Σ. There exists a deterministic condi-
tion automaton AD over Σ that is path-equivalent to A on labeled trees. The
condition automaton AD is {∗}-free if ∗ ∈ F and {π, π}-free if π, π ∈ F.

Proof. Let A = (S,Σ, C, I, F, δ, γ). By Lemma 4.12, we may assume that A
is id-transition-free. We notice that A is not deterministic if either two initial
states can hold on the same node or if there is a pair of transitions originating
from a state q, labeled by `, lead to two distinct states that can hold on the same
node. Hence, to makeA deterministic, we combine an exhaustive enumeration of
all possible mutually-exclusive state conditions implied by C with the classical
powerset construction to make the transition relation deterministic [25]. We
construct the resulting automaton AD = (SD,Σ, CD, ID, FD, δD, γD) as follows:

SD = {(Q,V ) | (V ⊆ C) ∧ (Q ⊆ {q | q ∈ S ∧ γ(q) ⊆ V })};
CD = C ∪ ccompl(C);

ID = {(Q,V ) | ((Q,V ) ∈ SD) ∧ (Q ⊆ I) ∧
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¬∃Q′ (((Q′, V ) ∈ SD) ∧ (Q ⊂ Q′ ⊆ I))};
FD = {(Q,V ) | ((Q,V ) ∈ SD) ∧ (Q ∩ F 6= ∅)};
δb = {((Q,V ), `, (P,W )) | ((Q,V ), (Q,W ) ∈ SD) ∧

(∀p ((p ∈ P ) =⇒ ∃q ((q ∈ Q) ∧ (q, `, p) ∈ δ)))};
δD = {((Q,V ), `, (P,W )) | (((Q,V ), `, (P,W )) ∈ δb) ∧

¬∃P ′ ((((Q,V ), `, (P ′,W )) ∈ δb) ∧ (P ⊂ P ′))};
γD = {((Q,V ), c) | (Q,V ) ∈ SD ∧ (c ∈ V ∨ c ∈ ccompl(C − V ))}.

Let T be a tree over Σ and let m,n be nodes of T . For any node n′ of T , let
ζ(n′) denote the set {c | c ∈ C ∧ (n′, n′) ∈ [[c]]T }. Both determinism of AD and
path equivalence of AD and A are guaranteed, since this construction satisfies
the following properties:

1. We have (n, n) ∈ [[conditions(ζ(n) ∪ ccompl(C − ζ(n)))]]T and, for all
W ⊆ C with W 6= ζ(n), (n, n) /∈ [[conditions(W ∪ ccompl(C −W ))]]T .
By definition, we have (n, n) ∈ [[conditions(ζ(n)∪ccompl(C−ζ(n)))]]T . To
show that no other choice for W is possible, we consider any W ⊆ C with
ζ(n) 6= W . We show that (n, n) /∈ [[conditions(W ∪ ccompl(C −W ))]]T .
As W 6= ζ(n), there exists c ∈ C such that c ∈W − ζ(n) or c ∈ ζ(n)−W :
(a) c ∈ ζ(n)−W . By c ∈ ζ(n) and (n, n) ∈ [[conditions(ζ(n)∪ccompl(C−

ζ(n)))]]T , we have (n, n) ∈ [[c]]T and (n, n) /∈ [[ccompl(c)]]T . As
c /∈ W , we have ccompl(c) ∈ W ∪ ccompl(C −W ). Hence, (n, n) /∈
[[conditions(W ∪ ccompl(C −W ))]]T .

(b) c ∈ W − ζ(n). Since c /∈ ζ(n), we have (n, n) /∈ [[c]]T . As c ∈ W ,
we have c ∈ W ∪ ccompl(C −W ). Hence, (n, n) /∈ [[conditions(W ∪
ccompl(C −W ))]]T .

2. There exists exactly one state (P, V ) ∈ ID such that m satisfies (P, V ).
By Property 1, V = ζ(m). By the construction of SD, there exists exactly
one set of states Q ⊆ I such that (Q,V ) ∈ ID and γ((Q,V )) = V ∪
ccompl(C − V ).

3. Let (P, V ) ∈ SD be a state that is satisfied by m. If there exists an `-labeled
edge (m,n) in T , then there exists exactly one transition ((P, V ), `, (Q,W )) ∈
δD such that n satisfies (Q,W ).
By Property 1, W = ζ(n). By the construction of SD and δD, there is ex-
actly one set of statesQ ⊆ S such that (Q,W ) ∈ SD and ((P, V ), `, (Q,W )) ∈
δD. By the choice of W , n must satisfy (Q,W ).

4. Let (P, V ) ∈ SD be a state such that m satisfies (P, V ). If there ex-
ists a directed path from m to n, then there also exists exactly one run
((P, V ),m) . . . ((Q,W ), n) of AD on T .
This follows from a repeated application of Property 3.

5. If (p, n) ` (p′, n′) is a run of A on T then, for every (P, V ) ∈ SD with
p ∈ P , there exists exactly one transition ((P, V ), `, (P ′, V ′)) ∈ δD such
that n′ satisfies (P ′, V ′). For this transition, we have p′ ∈ P ′.
By Property 1, V = ζ(n) and V ′ = ζ(n′). By the construction of δD, there
is exactly one set of states P ′ ⊆ S such that ((P, V ), `, (P ′, V ′)) ∈ δD.
Observe that we must have γ(p′) ⊆ V ′, hence p′ ∈ P ′.
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6. If there exists a run (q1,m) . . . (qi, n) of A on T with q1 ∈ I, then there also
exists a run ((Q1, V1),m) . . . ((Qi, Vi), n) of AD on T with (Q1, V1) ∈ ID,
and, for all j, 1 ≤ j ≤ i, qj ∈ Qj.
By induction on the length of the run. The base cases are runs of length
0, which are covered by Property 2. The inductive cases are runs of length
i ≥ 1, for which Property 5 can be used in a straightforward manner to
extend runs of length i− 1 to length i.

7. If there exists a run ((P, V ),m) ` ((Q,W ), n) of AD on T , then, for all
q ∈ Q, there also exists a run (p,m) ` (q, n), with p ∈ P , of A on T .
By the construction of δD, there must be a p ∈ P such that (p, `, q) ∈ δ.
By p ∈ P and q ∈ Q and by the definition of SD and γD, we have
γ(p) ⊆ V ⊆ γD((P, V )) and γ(q) ⊆ W ⊆ γD((Q,W )). Hence, m satisfies
p and n satisfies q. Thus (p,m) ` (q, n) is a run of A on T .

8. If there exists a run ((Q1, V1),m) . . . ((Qi, Vi), n) of AD on T , then, for
all qi ∈ Qi, there also exists a run (q1,m) . . . (qi, n) of A on T with, for
all j, 1 ≤ j < i, qj ∈ Qj.
By induction on the length of the run. The base cases involve runs of
the form ((Qi, Vi), n) of AD on T with Qi 6= ∅. By the definition of SD
and γD, we have γ(qi) ⊆ Vi ⊆ γD((Qi, Vi)). Hence, n satisfies qi and we
conclude that (qi, n) is a run of A on T . The inductive cases are runs
of length i ≥ 1, for which Property 7 can be used in a straightforward
manner to extend runs of length i− 1 to length i.

By Property 2 and Property 4 we conclude that AD is a deterministic con-
dition automaton. By Property 6 and the construction of ID and FD, [[A]]T ⊆
[[AD]]T . By Property 8 and the construction of ID and FD, [[AD]]T ⊆ [[A]]T .
Hence, we conclude that A and AD are path-equivalent. The construction of
CD did not add any usage of ∗, and introduced π only when π was present and
π only when π was present. Hence, the condition automata AD is {∗}-free if
∗ ∈ F and {π, π}-free if π, π ∈ F.

Using Lemma 4.18, we can construct the downward complement of a condi-
tion automaton.

Proposition 4.19. Let Σ be a finite set of edge labels, let F ⊆ {π, π, ∗}, and let
A be an F-free condition automaton over Σ. There exists a condition automaton
A′ over Σ such that, for every tree T over Σ, we have [[A′]]T = [[A]]T ↓. The
condition automaton A′ is {∗}-free if ∗ ∈ F and {π, π}-free if π, π ∈ F.

Proof. Let AD = (SD,Σ, CD, ID, FD, δD, γD) be a deterministic condition au-
tomaton equivalent to A. We construct A′ = (SD,Σ, CD, ID, SD − FD, δD, γD)
by swapping final and non-final states. Hence, [[A′]]T = [[A]]T ↓. Since no new
condition expressions were added in the above construction, A′ is {∗}-free if
∗ ∈ F and {π, π}-free if π, π ∈ F.

We can now conclude the following:
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Corollary 4.20. Let Σ be a finite set of edge labels, let F ⊆ {π, π, ∗}, and
let A1 and A2 be F-free condition automata over Σ. There exists a condition
automaton A− over Σ such that, for every tree T over Σ, we have [[A−]]T =
[[A1]]T − [[A2]]T . The condition automaton A− is {∗}-free if ∗ ∈ F, {π, π}-free
if π, π ∈ F, and acyclic whenever A1 is acyclic.

Proof. Since [[A1]]T − [[A2]]T = [[A1]]T ∩ [[A2]]T ↓, we can apply Propositions 4.14
and 4.19 to construct A−.

4.5. The collapse of ∩ and − in downward queries

Proposition 4.14 and Corollary 4.20 can be used to remove intersection and
difference from an expression at the highest level, but these results ignore ex-
pressions inside projections and coprojections. To fully remove intersection and
difference, we use a bottom-up construction:

Theorem 4.21. Let F ⊆ {π, π,∩,−, ∗}. On labeled trees, we have N (F) �path

N (F − {∩,−}).

Proof. Let Σ be a finite set of labels, and let e be an expression in NΣ(F).
We construct a path-equivalent expression in NΣ(F − {∩,−}) in a bottom-up
fashion by constructing a condition automaton A over Σ that is path-equivalent
to e and satisfies the conditions put on automata corresponding to the class
N (F − {∩,−}) (see Table 1). Using Proposition 4.9, the constructed condition
automaton A can be translated to an expression in NΣ(F − {∩,−}).

The base cases are expressions of the form ∅, id, and ` (` ∈ Σ), for which we
directly construct condition automata using Proposition 4.8. We use Proposi-
tion 4.7 to deal with the operators ◦, ∪, and ∗. We deal with expressions of the
form fj [e], f ∈ {π, π}, j ∈ {1, 2} by translating the condition automaton path-
equivalent to e to an expression e′, which is in NΣ(F − {∩,−}), and then use
Proposition 4.8 to construct the condition automaton path-equivalent to fj [e].
Finally, we use Proposition 4.14 and Corollary 4.20 to deal with the operators
∩ and −.

Observe that Theorem 4.21 does not strictly depend on the graph being
a tree: indirectly, Theorem 4.21 depends on Lemma 4.13, which holds for all
graphs in which every pair of nodes is connected by at most one directed path.
Hence, the results of Theorem 4.21 can be generalized to, for example, forests.

4.6. Condition automata on chains

Condition automata as a tool to represent and manipulate expressions can
also be used to simplify Boolean queries. To illustrate this, we use condition
automata to simplify expressions in N (F), {π} ⊆ F ⊆ {π, ∗}, used to query
chains. We do this by providing manipulation steps that reduce the total weight
of the projections in an expression:
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Definition 4.22. Let e be an expression in N (π, ∗). We define the condition
depth of e, denoted by cdepth(e), as

cdepth(e) =



0 if e ∈ {∅, id};
0 if e = `, with ` an edge label;

cdepth(e′) if e = [e′]∗;

cdepth(e′) + 1 if e = πj [e
′], j ∈ {1, 2};

max(cdepth(e1), cdepth(e2)) if e = e1 ⊕ e2, ⊕ ∈ {◦,∪}.

We define the condition depth of a {π}-free condition automatonA = (S,Σ, C, I, F, δ, γ),
denoted by cdepth(A), as cdepth(A) = max{cdepth(c) | c ∈ C}. We define the
condition weight of A, denoted by cweight(A), as

cweight(A) = |{c | c ∈ C ∧ cdepth(c) = cdepth(A)}|.

We now prove the following technical lemma:

Lemma 4.23. Let Σ be a finite set of labels, and let A be a {π}-free and id-
transition-free condition automaton over Σ. If cdepth(A) > 0, then there exists
a {π}-free and id-transition-free condition automaton Aπ over Σ such that

1. for every chain C over Σ, we have [[A]]C = ∅ if and only if [[Aπ]]C = ∅;
2. either cdepth(A) > cdepth(Aπ) or both cdepth(A) = cdepth(Aπ) and

cweight(A) > cweight(Aπ).

The condition automaton Aπ is acyclic and {∗}-free whenever A is acyclic and
{∗}-free.

Proof. Let A = (S,Σ, C, I, F, δ, γ). Choose a condition c ∈ C with cdepth(A) =
cdepth(c). If c is either ∅ or id, then we can eliminate it in a straightforward
manner. Hence, without loss of generality, we assume that c is of the form πj [e

′],
j ∈ {1, 2}. Let A′ = (S′,Σ, C ′, I ′, F ′, δ′, γ′) be a {π}-free and id-transition-free
condition automaton equivalent to e′ constructed using Proposition 4.8 and
Lemma 4.12. It is straightforward to verify that cdepth(A′) = cdepth(e′) =
cdepth(c) − 1. First, we assume j = 1. To eliminate c, we will integrate the
behavior of A′ into the behavior of A. Let ρ /∈ S ∪ S′ be a fresh state. We
construct the resulting automaton Aπ = (Sπ,Σ, Cπ, Iπ, Fπ, δπ, γπ) as follows:

Sc = {q | q ∈ S ∧ c ∈ γ(q)}; (1)

S¬c = S − Sc; (2)

S¬1 = {(q,Q) | q ∈ Sc ∧Q ⊆ S′ ∧Q ∩ I ′ = ∅}; (3)

Sπ = (S × P(S′))− ((S¬j ∪ {ρ})× (P(S′)− ∅)); (4)

Cπ = (C − {c}) ∪ C ′; (5)

I1 = {(q, {q′}) | q ∈ Sc ∩ I ∧ q′ ∈ I ′}; (6)

Iπ = {(q, ∅) | q ∈ S¬c ∩ I} ∪ Ij ; (7)
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F1 = {(q,Q) | q ∈ S¬c ∩ F ∧ ∅ ⊂ Q ⊆ F ′}
∪ {(q,Q) | q ∈ Sc ∩ F ∧ ∅ ⊂ Q ⊆ F ′ ∩ I ′}
∪ {(ρ,Q) | ∅ ⊂ Q ⊆ F ′}; (8)

Fπ = {(q, ∅) | q ∈ S¬c ∩ F} ∪ Fj ; (9)

δP(S′) = {(P, `,Q) | P ⊆ S′ ∧ ` ∈ Σπ ∧Q ⊆ S′ ∧
(∀p p /∈ P ∨ (∃q q ∈ Q ∧ (p, `, q) ∈ δ′)) ∧
(∀q q /∈ Q ∨ (∃p p ∈ P ∧ (p, `, q) ∈ δ′))}; (10)

δ1,b = {((p, P ∪ P ′), `, (q,Q)) |
(p, P ∪ P ′) ∈ Sπ ∧ P ′ ⊆ F ′ ∧ (q,Q) ∈ Sπ ∧
((p, `, q) ∈ δ ∨ ((p = ρ ∨ p ∈ F ) ∧ q = ρ)) ∧
(P, `,Q) ∈ δP(S′)}; (11)

δ1,c = {((p, P ∪ P ′), `, (q,Q ∪ {q′})) |
(p, P ∪ P ′) ∈ Sπ ∧ (q,Q ∪ {q′}) ∈ Sπ ∧
(p, `, q) ∈ δ ∧ (P, `,Q) ∈ δP(S′) ∧
q ∈ Sc ∧ q′ ∈ I ′ ∧ P ′ ⊆ F ′}; (12)

δπ = δj,b ∪ δj,c; (13)

γπ = {((q,Q), c′) | (q,Q) ∈ Sπ ∧ c′ ∈ Cπ ∧
((q 6= ρ ∧ c′ ∈ γ(q)) ∨ (∃q′ q′ ∈ Q ∧ c′ ∈ γ′(q′)))}, (14)

in which P(S) = {S′ | S′ ⊆ S} is the power set of set S, and we use the values
1 and 2 and the variable j, j ∈ {1, 2}, to indicate that definitions depend on
the type j of the condition c = πj [e

′].
We prove that Aπ satisfies the necessary properties.

1. Either cdepth(A) > cdepth(Aπ) or both cdepth(A) = cdepth(Aπ) and
cweight(A) > cweight(Aπ).
Observe that cdepth(A′) < cdepth(A). Hence, the property follows di-
rectly from (5), the definition of cdepth(·), and the definition of cweight(·).

2. Let C be a chain over Σ, and let c = π1[e′]. If (m,n) ∈ [[A]]C, then there
exists a node v of C such that (m, v) ∈ [[Aπ]]C.
We show that a single run of A is simulated by a single run of Aπ that, at
the same time, also simulates the runs of A′ starting at every state q ∈ S
with c ∈ γ(q).
Let (q1, n1) . . . (qz, nz) be an id-transition-free run with q1 ∈ I and qz ∈ F
proving (n1, nz) ∈ [[A]]C . Now consider a state qi, 1 ≤ i ≤ z, such that
c ∈ γ(qi). Observe that, by (1), we have c ∈ γ(qi) if and only if qi ∈ Sc.
As ni satisfies qi, we must have (ni, ni) ∈ [[c]]C . Hence, by the semantics
of π1[·], there must exist an id-transition-free run (pi, ni) . . . (p

′
i,mi) of A′

on C with pi ∈ I ′ and p′i ∈ F ′ proving that a node mi exists such that
(ni,mi) ∈ [[A′]]C .
For every state qi with qi ∈ Sc we choose such a run (pi, ni) . . . (p

′
i,mi)

of A′ on C with pi ∈ I ′ and p′i ∈ F ′. Let d be the maximum distance
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between, on the one hand, node n1, and, on the other hand, node nz and
the nodes mi in these runs. For every 1 ≤ k ≤ d, we let nk be the k-th
node on the downward path starting at n1, and we define

Rk = {s | (s, nk) is part of a run (pi, ni) . . . (p
′
i,mi) with 1 ≤ i ≤ z and qi ∈ Sc}.

Furthermore, we define rk = qk if k ≤ z and rk = ρ if k > z. Let
n1`1 . . . nd be the directed path from node n1 to the node at distance d in
chain C. We prove that ((r1, R1), n1) `1 . . . ((rd, Rd), nd) is a run of Aπ on
C, with (r1, R1) ∈ Iπ and (rd, Rd) ∈ Fπ, in the following steps:

(a) For every k, 1 ≤ k ≤ d, we have (rk, Rk) ∈ Sπ. If 1 ≤ k ≤ z,
then (rk, Rk) ∈ S × P(S′). If rk ∈ Sc, we have pk ∈ I ′ and, hence,
pk ∈ Rk. By (3), we have (rk, Rk) /∈ S¬1, and, hence, (rk, Rk) ∈ Sπ.
For k > z, we have (rk, Rk) ∈ {ρ} × P(S′). By the definition of Rk,
we must have Rk 6= ∅. Hence, we conclude, (rk, Rk) ∈ Sπ.

(b) We have (r1, R1) ∈ Iπ. By construction, we have r1 = q1 and q1 ∈ I.
If r1 /∈ Sc, then R1 = ∅ and, by (7), (r1, R1) ∈ Iπ. If r1 ∈ Sc, then
R1 = {p1}, with p1 ∈ I ′, and, by (6), (r1, R1) ∈ Iπ.

(c) For every k, 1 ≤ k ≤ d, nk satisfies (rk, Rk). By construction of
Rk, we have, for every s ∈ Rk, that nk satisfies s. If 1 ≤ k ≤ z,
then rk = qk and nk satisfies qk. Hence, we also have (nk, nk) ∈
[[conditions(γ(qk) \ {c})]]C . Hence, by (14), nk satisfies (rk, Rk).

(d) For every k, 1 ≤ k < d, ((rk, Rk), `k, (rk+1, Rk+1)) ∈ δπ. Construct
sets P and Q in the following way:

P = {p | p ∈ Rk ∧ (∃q q ∈ Rk+1 ∧ (p, `k, q) ∈ δ′)};
Q = {q | q ∈ Rk+1 ∧ (∃p p ∈ Rk ∧ (p, `k, q) ∈ δ′)}.

Let P ′ = Rk−P . The set of states P contains those states of Rk with
a successor state in Rk+1: for every p ∈ P , there exists q ∈ Rk+1

such that (p, `k, q) ∈ δ′. Hence, P ′ contains all states from Rk for
which there is no successor state in Rk+1. By (11) and (12), we have
((rk, Rk), `k, (rk+1, Rk+1)) ∈ δπ only if the states in P ′ are all final
states. We now prove that this restriction on P ′ holds. Let s ∈ P ′
be a state. By the construction of P , there does not exist a state
s′ ∈ Rk+1 such that (s, `k, s

′) ∈ δ′. Hence, s can only be a state used
at the end of a run (pi, ni) . . . (p

′
i,mi), 1 ≤ i ≤ k, with p′i ∈ F ′ and

s = p′i. We conclude that P ′ ⊆ F ′.
Let Q′ = Rk+1 − Q. The set of states Q contains those states of
Rk+1 with a predecessor state in Rk: for every q ∈ Q, there exists
p ∈ Rk such that (p, `k, q) ∈ δ′. Hence, Q′ contains all states from
Rk+1 for which there is no predecessor state in Rk. By (11) and
(12), we have ((rk, Rk), `k, (rk+1, Rk+1)) ∈ δπ only if there is at most
a single state in Q′, which must be an initial state. We now prove
that these restrictions on Q′ hold. Let s1, s2 ∈ Q′ be states. By
the construction of Q, there does not exist a state s′ ∈ Rk such that
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(s′, `k, s1) ∈ δ′ or (s′, `k, s2) ∈ δ′. Hence, both s1 and s2 can only be
states used at the begin of the run (pk, ni) . . . (p

′
k,mi) with pk ∈ I ′

and we have s1 = pk+1 = s2 = pk+1. We conclude that Q′ contains
at most a single state, which must be an initial state.
If rk+1 = ρ, then, by construction of Rk+1, we have, for every s ∈
Rk+1 and every 1 ≤ i ≤ z with qi ∈ Sc, (s, nk+1) 6= (pi, ni). Hence,
s is not at the begin of any run (pi, ni) . . . (p

′
i,mi). It follows that

there exists a state s′ ∈ S′ and a run (pi, ni) . . . (p
′
i,mi) containing

(s′, nk) `k (s, nk+1). Hence, s′ ∈ P , s /∈ Q′, and Q′ = ∅. If rk ∈ Sc,
then, by construction, we have pk ∈ Rk and pk ∈ I ′. If 1 ≤ k < z,
then rk = qk, rk+1 = qk+1, and (qk, `, qk+1) ∈ δ. We use (11) ifQ′ = ∅
and (12) if Q′ 6= ∅ to conclude ((rk, Rk), `k, (rk+1, Rk+1)) ∈ δπ. Else,
if k ≥ z, then rk+1 = ρ and Q′ = ∅. We use (11) to conclude
((rk, Rk), `k, (rk+1, Rk+1)) ∈ δπ.

(e) We have (rd, Rd) ∈ Fπ. If rd 6= ρ then d = z and qz ∈ F . If Rd = ∅
then, by (9), we have (rd, Rd) ∈ Fπ. If Rd 6= ∅, then, as nz = nd
is the node with maximum node distance d to n1 used in any of the
runs (pi, ni) . . . (p

′
i,mi) with 1 ≤ i ≤ z and qi ∈ Sc, we must also

have, for every s ∈ Rd, s ∈ F ′. If qz ∈ Sc, then, by construction,
pz ∈ Rd with pz ∈ I ′. By (8) we conclude that, in all these cases, we
have (rd, Rd) ∈ Fπ.

We conclude that ((r1, R1), n1)`1 . . . ((rd, Rd), nd) is a run of Aπ on C with
(r1, R1) ∈ Iπ and (rd, Rd) ∈ Fπ, and, hence (n1, nd) ∈ [[Aπ]]C .

3. Let C be a chain over Σ, and let c = π1[e′]. If (m,n) ∈ [[Aπ]]C, then there
exists a node v of C such that (m, v) ∈ [[A]]C.
We show that a single run of Aπ simulates a single run of A and, at the
same time, also simulates the runs of A′ starting at every state q ∈ S with
c ∈ γ(q).
Let ((q1, Q1), n1)`1 . . . ((qz, Qz), nz) be an id-transition-free run of Aπ on C
proving (n1, nz) ∈ [[C]]Aπ

. Hence, we have (q1, Q1) ∈ Iπ and (qz, Qz) ∈ Fπ.
Choose i such that 1 ≤ i ≤ z, qi 6= ρ, and i = z or qi+1 = ρ. We prove
that (q1, n1) `1 . . . (qi, ni) is a run of A on C with q1 ∈ I and qi ∈ F , in the
following steps:
(a) We have q1 ∈ I. By (6) and (7), we have (q1, Q1) ∈ Iπ only if q1 ∈ I.
(b) For all k, 1 ≤ k ≤ i, nk satisfies qk. We have nk satisfies (qk, Qk).

By (14), node nk satisfies all conditions in γ(qk) \ {c}. Hence, if
qk /∈ Sc, then nk satisfies qk. If qk ∈ Sc, then, by (3), there exists
a state p1 ∈ Qk such that p1 ∈ I ′. We prove that there are states
p1 ∈ Qk, . . . , pd ∈ Qk+d such that (p1, nk) `k . . . (pd, nk+d) is a run of
A′ on C with p1 ∈ I ′ and pd ∈ F ′. We do so by induction on the length
of the run. The base case is (p1, nk) and, as p1 ∈ Qk, this case is
already proven. Thus assume we have a run (p1, nk) `k . . . (pe, nk+e)
of A′ on C with 1 ≤ e < d and pe /∈ F ′. We show that we can
extend this run to a run of length e+ 1. Observe that (13) depends
on (10), via (11) and (12). If qe+1 6= ρ and pe /∈ F , then (11)
or (12) applies, and, hence, by (10), there must be a state pe+1 ∈
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Qk+e+1 such that (pe, `k+e, pe+1) ∈ δ′. Else, if qe+1 = ρ and pe /∈ F ,
then (11) applies, and, hence, by (10), there must be a state pe+1

such that (pe, `k+e, pe+1) ∈ δ′. We observe that this construction
will terminate, as the original run has a finite length z. Hence, at
some point we encounter a state pd ∈ F ′. We conclude (nk, nk+d) ∈
[[A′]]C , and, by the semantics of π1[·], we also conclude (nk, nk) ∈
[[c]]C . Hence, nk satisfies all conditions in γ(qk) and, in particular, nk
satisfies qk.

(c) For all 1 ≤ k < i, (qk, `k, qk+1) ∈ δ. We have qk 6= ρ and qk+1 6=
ρ, and, by the definition of a run, ((qk, Qk), `k, (qk+1, Qk+1)) ∈ δπ.
When qk 6= ρ and qk+1 6= ρ, then each of (11) and (12) guarantees
that (qk, `k, qk+1) ∈ δ.

(d) We have qi ∈ F . We distinguish three cases. If z = i and Qi = ∅,
then, by (9), (qi, Qi) ∈ Fπ implies qi ∈ F . If z = i and Qi 6= ∅, then,
by (8), (qi, Qi) ∈ Fπ implies qi ∈ F and Qi ⊆ F ′. If z 6= i, then we
must have qi+1 = ρ. Hence, by (11), ((qi, Qi), `i, (qi+1, Qi+1)) ∈ δπ
implies qi ∈ F .

Hence, we conclude (n1, ni) ∈ [[A]]C .
4. Aπ is a {π}-free and id-transition-free condition automaton over Σ. The

condition automata Aπ is acyclic whenever A is acyclic and {∗}-free.
By (5) and by (13) we immediately conclude that Aπ is a {π}-free and
id-transition-free condition automaton over Σ, and that Aπ is {∗}-free
whenever A is {∗}-free. If A is acyclic and {∗}-free, then we can use the
proofs of Property 3 to translate every run of Aπ into runs of A and A′.
Using this translation, runs of Aπ can only be unbounded in length if runs
of A or of A′ can be unbounded in length. Hence, Aπ must be acyclic
whenever A and A′ are acyclic.

The case for j = 2 is proven similarly, in which case we change the definition
of Aπ as follows:

S¬2 = {(q,Q) | q ∈ Sc ∧Q ⊆ S′ ∧Q ∩ F ′ = ∅};
I2 = {(q,Q) | q ∈ S¬c ∩ I ∧ ∅ ⊂ Q ⊆ I ′}

∪ {(q,Q) | q ∈ Sc ∩ I ∧ ∅ ⊂ Q ⊆ I ′ ∩ F ′}
∪ {(ρ,Q) | ∅ ⊂ Q ⊆ I ′};

F2 = {(q, {q′}) | q ∈ Sc ∩ F ∧ q′ ∈ F ′};
δ2,b = {((p, P ), `, (q,Q ∪Q′)) |

(p, P ) ∈ Sπ ∧Q′ ⊆ I ′ ∧ (q,Q ∪Q′) ∈ Sπ ∧
((p, `, q) ∈ δ ∨ (p = ρ ∧ (q = ρ ∨ q ∈ I))) ∧
(P, `,Q) ∈ δP(S′)};

δ2,c = {((p, P ∪ {p′}), `, (q,Q ∪Q′)) |
(p, P ∪ {p′}) ∈ Sπ ∧ (q,Q ∪Q′) ∈ Sπ ∧
(p, `, q) ∈ δ ∧ (P, `,Q) ∈ δP(S′) ∧
p ∈ Sc ∧ p′ ∈ F ′ ∧Q′ ⊆ I ′}.
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The proof that this construction is sound is analogous to the case for j = 1.

Lemma 4.23 only removes a single projection operator. To fully remove
projections, we repeat these removal steps until no projections are left. This
leads to the following result:

Theorem 4.24. Let F ⊆ {π, ∗}. On labeled chains, we have N (F) �bool N (F−
{π}).

Proof. Given a set of labels Σ, we use Proposition 4.8 to translate an expres-
sion in NΣ(F) to a condition automaton A over Σ, then we repeatedly ap-
ply Lemma 4.23 to remove conditions, and, finally, we use Proposition 4.9 to
translate the resulting {π}-free automaton over Σ back to an expression in
NΣ(F − {π}). Observe that only a finite number of condition removal steps on
A can be made, as Lemma 4.23 guarantees that either cdepth(A) strictly de-
creases or else cdepth(A) does not change and cweight(A) strictly decreases.

We observed that Theorem 4.21 does not strictly depend on the graph being
a tree. Similarly, Theorem 4.24 does not strictly depend on the graph being a
chain: we can remove a π-condition whenever the condition checks a part of the
graph that does not branch. This is the case for π2-conditions on trees, as trees
do not have branching in the direction from a node to its ancestors. For π1, this
observation does not hold, as is illustrated by the proof of Proposition 3.6.

Proposition 4.25. Let F ⊆ {∗}. On labeled trees, we have N (F ∪ {π2}) �bool

N (F), but N (F ∪ {π1}) �bool N (F).

5. Related work

Tree query languages have been widely studied, especially in the setting
of the XML data model using XPath-like query languages. For an overview,
we refer to Benedikt et al. [10]. Due to the large body of work on querying
of tree-based data models, we only point to related work that studies similar
expressiveness problems.

Benedikt et al. [20] studied the expressive power of the XPath fragments
with and without the parent axis, with and without ancestor and descendant

axes, and with and without qualifiers (which are π1-conditions). Furthermore,
they studied closure properties of these XPath fragments under intersection
and complement. As such, the work by Benedikt et al. answered similar ex-
pressiveness questions as our work does. The Core XPath fragments studied by
Benedikt et al. do, however, not include non-monotone operators (such as π and
−) and allow only for a very restricted form of transitive closure, required to
define the ancestor and descendant axes. Hence, queries such as [` ◦ `]∗ and
`1 ◦ [`2 ◦ `2]∗ ◦ `1, used in Proposition 3.14, are not expressible in these XPath
fragments.

When accounting for the difference between the node-labeled tree model
used by Benedikt et al. [20] and the edge-labeled tree model used here, and
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when restricting ourselves to the downward fragments as studied here, we see
that all relevant XPath fragments of Benedikt et al., fragment Xr,[] and its frag-
ments, are strictly less expressive than the navigational query languageN (π1,

∗).
Furthermore, we observe that X is path-equivalent to N () and that X[] is path-
equivalent to N (π1). As such, our work extends some of the results of Benedikt
et al. to languages that have a more general form of transitive closure.

Conditional XPath, Regular XPath, and Regular XPath≈ [8, 9, 21, 22] are
studied with respect to a sibling-ordered node-labeled tree data model. The
choice of a sibling-ordered tree data model makes these studies incomparable
with our work: on sibling-ordered trees, Conditional XPath is equivalent to
FO[3], and FO[3] is equivalent to general first-order logic [8]. This result does
not extend to our tree data model: on our tree data model, FO[3] cannot express
simple first-order counting queries such as

∃n∃c1∃c2∃c3∃c4 `(n, c1) ∧ `(n, c2) ∧ `(n, c3) ∧ `(n, c4) ∧
(c1 6= c2) ∧ (c1 6= c3) ∧ (c1 6= c4) ∧

(c2 6= c3) ∧ (c2 6= c4) ∧ (c3 6= c4),

which is true on all trees over Σ = {`} that have a node with at least four distinct
children. Although N (π, π,∩,−, ∗) is not a fragment of FO[3], due to the inclu-
sion of the transitive closure operator, a straightforward brute-force argument
shows that not even N (π, π,∩,−, ∗) can express these kinds of counting queries.
With an ordered sibling axis, as present in the sibling-ordered tree data model,
the above counting query is Boolean-equivalent to sibling◦sibling◦sibling.

Due to these differences in the tree data models used, the closure properties
under intersection and complement for Conditional XPath and Regular XPath≈

cannot readily be translated to closure properties for the navigational query
languages we study.

The XPath algebra of Gyssens et al. [23], when restricted to the downward
fragment, corresponds to the navigational query languageN (π,∩,−). This work
studied the expressiveness of various XPath algebra fragments with respect to
a given tree, whereas we study the expressive power with respect to the class of
labeled and unlabeled trees and chains. The positive algebra of Wu et al. [24],
when restricted to the downward fragment, corresponds to the navigational
query language N (π,∩). The expressivity results in this work are dependent
on the availability of a parent-axis (or a converse operator), and, thus, are not
directly relevant for the study of the downward-only fragments.

There has been some work on the expressive power of variations of the reg-
ular path queries and nested regular path queries [14], which are equivalent
to fragments of the navigational query languages. Furthermore, on graphs the
navigational query languages (both labeled and unlabeled) have already been
studied in full detail [5, 17–19]. On graphs, we have separation results in almost
all cases, the only exception being the Boolean equivalence of the fragments
N (∗) and N () on unlabeled graphs. These known separation results were all
proven on general graphs. A major contribution of our work is strengthening
several of these separation results to also cover much simpler classes of graphs
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(trees and chains). Moreover, we have shown that the navigational query lan-
guages behave, in many cases, very differently on trees and chains than they
do on graphs, resulting in the major redundancy in the expressive power of the
navigational query languages that we have proven in this work.

Finally, we want to point out that several of the concepts used in this paper,
or at least variations thereof or similar concepts, have been studied by many
different communities, for example, in algebraic logic, modal logic, category
theory, and formal languages, sometimes under different names. We discuss
these variations next.

The concepts of domain (Do) and range (Rn) of a binary relation are com-
mon (e.g., Tarski and Givant [27]):

Do(R) = {x | ∃y (x, y) ∈ R};
Rn(R) = {y | ∃x (x, y) ∈ R}.

Though Do(R) and Rn(R) are not binary relations, they stand in direct cor-
respondece with the projections π1[R] and π2[R], respectively. In the field of
category theory, the concepts of domain and range are special cases of restric-
tions and range restrictions, whereas the coprojection π1[R] is a kernel [28–31].

The coprojection π1 also corresponds to operations considered in the field
of logic, including modal logic and algebraic logic. More specifically, π1 cor-
responds precisely with the dynamic negation operation in Dynamic Predicate
Logic [32] and Dynamic Relation Algebra [33, 34]. It is also called test nega-
tion in Propositional Dynamic Logic [35] and pseudo-complement in Abstract
Algebra [36]. The concept of domain (i.e., π1) and codomain (i.e., π1) also fea-
ture in the study of algebraic programming languages, and in particular in an
extension of Kozen’s Kleene Algebra with Tests (KAT) [37] with these domain
operations [38]. In summary, π1[R] can be viewed as computing the comple-
ment of the domain of R, i.e., the co- or anti-domain. Analogously, π2[R] can
be viewed as computing the complement of the range of R, i.e., the co- or
anti-range.

In some works, the converse operation is called the inverse operation (see,
e.g., Fletcher et al. [5]). In other works, the inverse operator −1 is reserved
for relations that are one-to-one functions (see, e.g., Tarski and Givant [27]).
Additionally, the composition operation ◦ is called the relative product operator
| in the field of relation algebra [39].

We also mention that automata with test conditions have been considered in
the context of formal languages. A concrete case is the class of finite automata
on guarded strings considered by Kozen [40] in his study of KAT [37]. Such
automata are like standard non-deterministic automata except that transitions
may now, besides standard labels from an alphabet, also be labeled by a boolean
combinations of some basic propositions (tests). These automata accept so
called “guarded strings” which correspond to traces of a KAT program. As
such an automaton on guarded strings can be viewed as a representation of the
semantics of such a program.

The condition automata we consider in this paper bear resemblance to finite
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automata on guarded strings, but differ in that transitions are labeled by relation
labels and conditions are placed on the states of the automata. More impor-
tantly, a condition automaton accepts a binary relation, rather than guarded
strings (KAT program traces), and is, as such, a tool for computations on bi-
nary relations. A main result of our paper is that when restricted to trees, the
intersection and set difference operations can be simulated using closure results
on condition automata. Such a result is not available for finite automata on
guarded strings.

6. Conclusions and directions for future work

This paper studies the expressive power of the downward navigational query
languages on trees and chains, both in the labeled and in the unlabeled case.
We are able to present the complete Hasse diagrams of relative expressiveness,
visualized in Figure 2. In particular, our results show, for each fragment of the
navigational query languages that we study, whether it is closed under differ-
ence and intersection when applied on trees. These results are proven using
the concept of condition automata, which we use to represent and manipulate
navigational expressions. We also use condition automata to show that, on la-
beled chains, projections do not provide additional expressive power for Boolean
queries.

The next step in this line of research is to explore common non-downward
operators, starting with node inequality via the diversity operator and the con-
verse of the edge relation (which provides, among other things, the parent axis of
XPath, and, in combination with transitive closure, provides the ancestor axis).
Particularly challenging are the interactions between − and di. We conjecture,
for example, that N (di, π,−) �bool N (di, π,∩), but this conjecture is still wide
open.

Another direction is the study of languages with only one of the projections
(or one of the coprojections) as Proposition 4.25 shows that in some cases adding
only π1 or only π2 may affect the expressive power. Indeed, various XPath
fragments and the nested RPQs only provide operators similar to π1. Another
interesting avenue of research is to explore the relation between the navigational
expressions (and FO[3]) on restricted relational structures and FO[2], the lan-
guage of first-order logic formulae using at most two variables [41]. Our results
for N (π,∩, ∗) on unlabeled trees already hint at a collapse of FO[3] to FO[2]
for Boolean queries: for Σ = {`}, the query `k can easily be expressed in FO[2]
algebras with semi-joins via `n(· · ·n`). A last avenue of theoretical research we
wish to mention is to consider other semantics for query-equivalence and other
tree data models, such as the root equivalence of Benedikt et al. [20] and the
ordered-sibling tree data model. Finally, from a practical perspective it remains
open whether the redundancies we have proven in this paper—especially those
for intersection and difference—can be used for optimizing tree querying.
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