
Relative Expressive Power of Downward Fragments of
Navigational Query Languages on Trees and Chains

Jelle Hellings1 Marc Gyssens1 Yuqing Wu2 Dirk Van Gucht3

Jan Van den Bussche1 Stijn Vansummeren4 George H. L. Fletcher5
1Hasselt University and Transnational University of Limburg

2Pomona College
3Indiana University

4Université Libre de Bruxelles
5Eindhoven University of Technology

{jelle.hellings, marc.gyssens, jan.vandenbussche}@uhasselt.be
melanie.wu@pomona.edu, vgucht@cs.indiana.edu
stijn.vansummeren@ulb.ac.be, g.h.l.fletcher@tue.nl

Abstract
Motivated by the continuing interest in the tree data model, we
study the expressive power of downward fragments of navigational
query languages on trees. The basic navigational query language
we consider expresses queries by building binary relations from
the edge relations and the identity relation, using composition and
union. We study the effects on the expressive power when we
add transitive closure, projections, coprojections, intersection, and
difference. We study expressiveness at the level of boolean queries
and path queries, on labeled and unlabeled trees, and on labeled
and unlabeled chains. In all these cases, we are able to present the
complete Hasse diagram of relative expressiveness. In particular,
we were able to decide, for each fragment of the navigational query
languages that we study, whether it is closed under difference and
intersection when applied on trees.

Categories and Subject Descriptors H.2.3 [Database Manage-
ment]: Languages—Query languages; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages—Classes defined by
grammars or automata

General Terms Theory

Keywords Tree Queries, Expressive Power, Automata

1. Introduction
Many relations between data can be described in a hierarchical way,
including taxonomies such as the taxonomy of species studied by
biologists, corporate hierarchies, and file and directory structures.
A logical step is to represent these data using a tree-based data
model. It is therefore not surprising that tree-based data models
were among the first used in commercial database applications,

the prime example being the hierarchical data model that is used
since the 1960s [25]. Since the 1970s, other data models, such
as the relational data model [6], almost completely replaced the
hierarchical data model. Interest in tree-based data models revived
in the 1990s by the introduction of the XML data model [4], which
allowed for unstructured and semi-structured tree data, and, more
recently, by JSON, as used by several NoSQL products [7].

Observe that tree-based data models are special cases of graph-
based data models. In practice, query languages for trees and
graphs usually rely on navigating the structure to find the data
of interest. Examples of this focus on navigation can be found
in XPath [2, 5, 19, 23], SPARQL [16, 21], and the regular path
queries (RPQs) [1]. The core navigational power of these query
languages can be captured by various fragments of the calculus
of relations, popularized by Tarski, extended with transitive clo-
sure [13, 22]. In the form of the navigational query languages
of Fletcher et al. [8], the relative expressive power of these frag-
ments have been studied in full detail on graph-structured data [9–
11]. Much less is known for the more restrictive tree data model,
however: most of the results on graphs do not directly apply to
trees. There are expressiveness results for several XPath frag-
ments [3, 12, 15, 19, 20, 23, 24, 26] in the context of XML, but
these results do not provide a complete picture of the relative ex-
pressive power of the various fragments of the navigational query
languages we consider here. As a first step towards this aim, we
study the expressive power of the downward fragments: these are
the navigational query languages that only allow downward navi-
gations in the tree via parent-child relations.

The smallest fragment of the downward navigational query lan-
guages we consider can express queries by building binary rela-
tions from the edge relations and the identity relation (id), using
composition (◦) and union (∪). We study the effect on the expres-
sive power of adding transitive closure (+); projections (π)—which
can be used to express conditions similar to the node-expressions
in XPath [19] and the branching operator in nested RPQs [1]; co-
projections (π)—which can be used to express negated conditions;
intersection (∩); and difference (\). We study expressiveness for
both path queries, which evaluate to a set of node pairs, and boolean
queries, which evaluate to true or false. We do not only consider
labeled trees, but also unlabeled trees and labeled and unlabeled
chains, the reason being that most query languages are easier to an-

alyze on these simpler structures and inexpressiveness results ob-
tained on them can then be bootstrapped to the more general case.

For all the cases we consider, we are able to present the com-
plete Hasse diagram of relative expressiveness; these Hasse dia-
grams are summarized in Figure 1. In several cases, we were able
to argue that pairs of downward fragments of the navigational query
languages that are not equivalent in expressive power when used to
query graphs, are already not equivalent in expressive power on the
simplest of graphs: labeled or unlabeled chains. Hence, for these
languages, we actually strengthen the results of Fletcher et al. [8].

In the cases where graphs and trees yield different expressive-
ness results, we were able to prove collapse results. In particu-
lar, we were able to decide, for each fragment of the navigational
query languages that we study, whether it is closed under dif-
ference and intersection when applied on trees: adding intersec-
tion to a downward fragment of the navigational query languages
does not change the expressive power, and adding difference only
adds expressive power when π is present and π is not present, in
which case difference only adds the ability to express π. To prove
these closure results, we develop a novel technique based on fi-
nite automata [17], which we adapt to a setting with conditions.
We use these condition automata to represent and manipulate nav-
igational queries, with the goal to replace ∩ and \ operations. We
also use these condition automata to show that, in the boolean case,
π never adds expressive power when querying labeled chains. Fi-
nally, using homomorphism-based techniques, we show that, in the
boolean case on unlabeled trees and unlabeled chains, only frag-
ments with the non-monotone operator π can express queries that
are not equivalent to queries of the form the height of the tree is at
least k.

Our study of the relative expressive power of the downward
fragments of the navigational query languages on trees also has
practical ramifications. If, for example, two language fragments are
equivalent, then this leads to a choice in query language design:
choosing, on the one hand, a smaller set of operators that, due to its
simplicity, is easier to implement and optimize, even when dealing
with big data in a distributed setting or when using specialized
hardware, or, on the other hand, a bigger set of operators that allows
for easier querying by the end users. Indeed, if one is only interested
in boolean queries on unlabeled trees, then RPQs are much harder
to evaluate than queries of the form the height of the tree is at
least k, although our results indicate that these query languages
are, in this case, equivalent. Moreover, all our collapse results are
constructive: we present ways to rewrite queries using operators
such as ∩ and \ into queries that do not rely on these operators.
Hence, our results can be used as a starting point for automatic
query rewriting and optimization techniques that, depending on the
hardware, the data size, and the data type, choose an appropriate
query evaluation approach.

Organization In Section 2, we present the basic notions used
throughout this paper. In Section 3, we present all relevant re-
sults on the relative expressive power of the downward navigational
query languages, resulting in the Hasse diagrams of relative expres-
siveness visualized in Figure 1. In Section 4, we discuss related
work. In Section 5, we summarize our findings and propose direc-
tions for future work.

2. Preliminaries
A graph is a pair G = (N,E), with N a finite set of nodes and E
a set of binary edge relations. Each edge relation ` ∈ E is a subset
of N×N and is interpreted as those edges labeled with `. A graph
is unlabeled if |E| = 1. On unlabeled graphs, we use E to refer to
the single edge relation. A tree T = (N,E) is an acyclic graph in
which exactly one node, the root, has no incoming edges, and all

other nodes have exactly one incoming edge. In an edge (m,n),
node m is the parent of node n and node n is a child of node
m. A chain is a tree in which all nodes have at most one child.
A path in a graph G = (N,E) is a sequence n1`1n2 . . . `i−1ni
with n1, . . . , ni ∈ N, `1, . . . , `i−1 ∈ E, and, for all 1 ≤ j < i,
(nj , nj+1) ∈ `j .

Definition 1 (Navigational expressions syntax). The navigational
expressions over graphs are defined by the grammar

e := ∅ | id | di | ` (for ` an edge-label) | e ◦ e | e ∪ e |
[e]− | [e]+ | π1[e] | π2[e] | π1[e] | π2[e] | e ∩ e | e \ e.

We also use the following shorthand notation

[e]∗ ≡ [e]+ ∪ id.

Definition 2 (Navigational expressions semantics). Let G =
(N,E) be a graph and let e be a navigational expression. We write
e〈G〉 to denote the evaluation of navigational expression e on graph
G. The semantics of navigational expressions is defined as follows:

∅〈G〉 = ∅;
id〈G〉 = {(m,m) | m ∈ N};
di〈G〉 = {(m,n) | m,n ∈ N ∧m 6= n};
`〈G〉 = ` (for ` an edge-label with ` ∈ E);
`〈G〉 = ∅ (for ` an edge-label with ` /∈ E);

e1 ◦ e2〈G〉 = e1〈G〉 ◦ e2〈G〉;
e1 ∪ e2〈G〉 = e1〈G〉 ∪ e2〈G〉;

[e]−〈G〉 = [e〈G〉]− ;

[e]+〈G〉 = [e〈G〉]+ ;

π1[e]〈G〉 = {(m,m) | ∃n (m,n) ∈ e〈G〉};
π2[e]〈G〉 = {(m,m) | ∃n (n,m) ∈ e〈G〉};
π1[e]〈G〉 = {(m,m) | (m ∈ N) ∧ (¬∃n (m,n) ∈ e〈G〉)};
π2[e]〈G〉 = {(m,m) | (m ∈ N) ∧ (¬∃n (n,m) ∈ e〈G〉)};

e1 ∩ e2〈G〉 = e1〈G〉 ∩ e2〈G〉;
e1 \ e2〈G〉 = e1〈G〉 \ e2〈G〉.

In the above, R1 ◦ R2, for binary relations R1,R2 ⊆ N ×N, is
defined by R1 ◦ R2 = {(m,n) | ∃z ((m, z) ∈ R1) ∧ ((z, n) ∈
R2)}, [R]−, for a binary relation R ⊆ N × N, is defined by
[R]− = {(m,n) | (n,m) ∈ R}, and [R]+, for a binary relation
R ⊆ N×N, is defined by [R]+ =

⋃
1≤kRk, in which we define

Rk =

{
R if k = 1;

R ◦ Rk−1 if k > 1.

In the sequel, we shall also use this last notation for navigational
expressions.

In this work, we only study downward navigational expressions.
Thus we do not consider diversity (di) and the converse operation
(−) in this paper.

Definition 3 (Query semantics). Let e be a navigational expression
and let G = (N,E) be a graph. Using path query semantics, e on
G evaluates to e〈G〉, and using boolean query semantics, e on G
evaluates to the truth value of e〈G〉 6= ∅.

Example 1. Consider the class-structure of a program described by
relations subclass and method. In this setting, the query [subclass]+

returns the relation between classes and their descendant classes,
the query π1[method] returns all classes that do not define own
methods, and the query π1[method] \ π1

[
[subclass]+ ◦ method

]

Boolean queries Path queries
Chains Trees Chains and Trees

L
ab

el
ed

N ()
N (∩)
N (\)
N (π)

N (π,∩)

N (π)
N (π,∩)
N (π, \)

N (+)
N (+,∩)
N (+, \)
N (+, π)
N (+, π,∩)

N (+, π)
N (+, π, \)

N ()
N (∩)
N (\)

N (π)
N (π,∩)

N (π)
N (π,∩)
N (π, \)

N (+)
N (+,∩)
N (+, \)

N (+, π)
N (+, π,∩)

N (+, π)
N (+, π, \)

N ()
N (∩)
N (\)

N (π)
N (π,∩)

N (π)
N (π,∩)
N (π, \)

N (+)
N (+,∩)
N (+, \)

N (+, π)
N (+, π,∩)

N (+, π)
N (+, π, \)

U
nl

ab
el

ed

N ()
N (∩)
N (\)
N (π)

N (π,∩)

N (+)
N (+,∩)
N (+, \)
N (+, π)
N (+, π,∩)

N (π)
N (π,∩)
N (π, \)

N (+, π)
N (+, π, \)

N ()
N (∩)
N (\)
N (π)

N (π,∩)

N (+)
N (+,∩)
N (+, \)
N (+, π)
N (+, π,∩)

N (π)
N (π,∩)
N (π, \)

N (+, π)
N (+, π, \)

N ()
N (∩)
N (\)

N (π)
N (π,∩)

N (π)
N (π,∩)
N (π, \)

N (+)
N (+,∩)
N (+, \)

N (+, π)
N (+, π,∩)

N (+, π)
N (+, π, \)

Figure 1. The full Hasse diagrams describing the relations between the expressive power of the various fragments of N (+, π, π, \,∩). An
edge A B indicates A � B and B � A.

returns all classes that define methods, while having no descendants
that also define methods.

We study the relative expressive power, both for path queries
and boolean queries, of the various classes of the navigational
expressions obtained by allowing or disallowing certain parts of
the grammar of Definition 1. We usually refer to the obtained
query languages as the navigational query languages. The most
restricted language we study, denoted by N (), is the language
that allows the basic operators ∅, id, ` (for ` an edge-label), ◦,
and ∪. If F ⊆ {+, π, π,∩, \}, then N (F) denotes the language
that allows all basic operators and, additionally, the operators in F.
Here, π represents both projection operators (π1 and π2), and π
both coprojection operators (π1 and π2).

We say that queries e1 and e2 are path-equivalent if, for all
graphs G, we have e1〈G〉 = e2〈G〉, and are boolean-equivalent
if, for all graphs G, we have e1〈G〉 6= ∅ if and only if e2〈G〉 6= ∅.
If N1 and N2 are query languages, then N2 path-subsumes N1,
denoted by N1 �p N2, if every query in N1 is path-equivalent to
a query in N2. Likewise, N2 boolean-subsumes N1, denoted by
N1 �b N2, if every query in N1 is boolean-equivalent to a query
inN2. We say that two languagesN1 andN2 are path-equivalent if
N1 �p N2 and N2 �p N1, and boolean-equivalent if N1 �b N2

andN2 �b N1.
By restricting the set of graphs to labeled or unlabeled graphs,

labeled or unlabeled trees, or labeled or unlabeled chains, we can
also speak of path-subsumption and boolean-subsumption with re-
spect to one of the more restricted classes of graphs. We can say,
for example, that N2 boolean-subsumes N1 on unlabeled trees if,
for every query e inN1, there exists a query e′ inN2 such that, for
all unlabeled trees T , we have e〈T 〉 6= ∅ if and only if e′〈T 〉 6= ∅.

Observe that N (F1) �p N (F2) implies N (F1) �b N (F2),
and, by contraposition, N (F1) �b N (F2) implies N (F1) �p
N (F2) [8]. We also observe that we can carry over subsumption
results from one type of graph to another, considering the relation-
ships of Figure 2. Inequivalence results carry over from specialized

unlabeled chain

labeled chain

unlabeled tree

labeled tree

unlabeled graph

labeled graph

Figure 2. Relationship between the various types of graphs; ar-
rows indicate is-a relations.

graphs to more general graphs (following the arrows), while equiv-
alence results carry over from general graphs to more specialized
graphs (following the arrows backwards).

The subsumption results for the navigational query languages
on graphs (both labeled an unlabeled) have already been studied in
full detail [8–11]. We summarize the results that are relevant to us
in this paper.

First, observe the following identities:

π1[e] ≡ π1[π1[e]];

π2[e] ≡ π2[π2[e]];

π1[e] ≡ id \ π1[e];

π2[e] ≡ id \ π2[e];

e1 ∩ e2 ≡ e1 \ (e1 \ e2).

Let F ⊆ {+, π, π,∩, \}. We define F to be the superset of F
obtained by adding all operators that can be expressed indirectly
inN (F) by using the above identities.

Proposition 1 (Fletcher et al. [8–11]). Let F1,F2 ⊆ {+, π, π,∩,
\}. On labeled graphs, we haveN (F1) �p N (F2) andN (F1) �b
N (F2) if and only if F1 ⊆ F2. On unlabeled graphs, we have
N (F1) �p N (F2) if and only if F1 ⊆ F2, and we haveN (F1) �b
N (F2) if and only if F1 ⊆ F2 or F1 ⊆ {π} and F2 = F1 ∪ {+}.

3. Expressive power
In this Section, we present all relevant results on the relative ex-
pressive power of the downward navigational query languages, re-
sulting in the Hasse diagrams of relative expressiveness visualized
in Figure 1. We divide our results in four categories, based on the
techniques used to prove them. Section 3.1 is dedicated to showing
that π is a primitive operator for path queries. Section 3.2 provides
all the results obtained using homomorphisms. These include a ma-
jor collapse result for boolean queries on unlabeled trees and unla-
beled chains. Section 3.3 introduces condition automata and uses
condition automata to obtain closure results for difference and in-
tersection. Furthermore, condition automata are used to show that
π does not add expressive power for boolean queries on labeled
chains. Section 3.4 uses the relation between the navigational query
languages and first-order logic to prove some expressiveness results
involving +.

Combined, all these results prove the following:

Theorem 1. Let F1,F2 ⊆ {+, π, π,∩, \}. We have N (F1) �b
N (F2), respectively N (F1) �p N (F2), on unlabeled chains, re-
spectively labeled chains, unlabeled trees, or labeled trees if and
only if there exists a directed path from F1 to F2 in the correspond-
ing Hasse diagram of Figure 1.

3.1 Identity-based results
In this Section, we show that π is a primitive operator for path
queries, meaning that adding π always increases expressive power
(unless π is already added, in which case π can be expressed by
straightforward rewriting).

Lemma 1. Let C = (N,E) be an unlabeled chain, let F ⊆
{+,∩, \}, and let e be a navigational expression inN (F). We have
e〈C〉 ∩ id〈C〉 = ∅ or e〈C〉 ∩ id〈C〉 = id〈C〉.
Proposition 2. Let F ⊆ {+,∩, \}. On unlabeled chains we have
N (π) �p N (F).

Proof. Let C = (N,E) be a chain with 2 ≤ |N|. We have
∅ (π1[E]〈C〉 = π1[E] ∩ id〈C〉 (id〈C〉. By Lemma 1, no
expression inN (F) can be path-equivalent with π1[E].

3.2 Homomorphism-based results
Homomorphisms are often used to prove properties of query lan-
guages, including expressiveness results [8]. We use homomor-
phisms to show several results, including a major collapse result
for boolean queries on unlabeled trees and unlabeled chains: we
show that only fragments with the non-monotone1 operator π can
express queries that are not equivalent to queries of the form the
height of the tree is at least k.

Definition 4 (Homomorphism). Let G1 = (N1,E1) and G2 =
(N2,E2) be graphs. We say that a mapping h : N1 → N2

is a homomorphism from G1 to G2 if, for every pair of nodes
m,n ∈ N1 and every edge-label `, we have that (m,n) ∈ `
implies (h(m), h(n)) ∈ `.

It is straightforward to prove that the navigational query lan-
guages without the non-monotone operators π and \ are closed un-
der homomorphisms.

Lemma 2. Let F ⊆ {+, π,∩}. The language N (F) is closed un-
der homomorphisms: for every navigational expression e inN (F),
every pair of graphs G1 = (N1,E1) and G2 = (N2,E2), and
every homomorphism h of G1 to G2, we have that (m,n) ∈ e〈G1〉
implies (h(m), h(n)) ∈ e〈G2〉.

1 A navigational expression e is monotone if, for every graph G and every
graph G′ obtained from adding nodes or edges to G, we have e〈G〉 ⊆ e〈G′〉.

Let T = (N,E) be a tree. If r ∈ N is the root of T , then the
depth of node n ∈ N is the length of the directed path, counted in
the number of nodes on the path, from r to n. The depth of tree T ,
denoted by depth(T), is the maximum depth of any node m ∈ N.
Hence, if T is a chain, then depth(T) = |N|.
Lemma 3. Let C1 = (N1,E1) and C2 = (N2,E2) be unlabeled
chains. If |N1| ≤ |N2|, then there exists a homomorphism of C1
to C2. Let T = (NT ,ET) be an unlabeled tree and let C =
(NC,EC) be an unlabeled chain. If |NC | ≥ depth(T), then there
exists a homomorphism of T to C, and if |NC | ≤ depth(T), then
there exists a homomorphism of C to T .

We use these homomorphisms between unlabeled chains and
unlabeled trees to show that only fragments that can express the
non-monotone operator π, can express boolean queries on unla-
beled trees that are different from queries of the form the height of
the tree is at least k.

Theorem 2. Let F ⊆ {+, π,∩}. On unlabeled trees we have
N (F) �b N ().

Proof. Let T = (N,E) be a tree and let C′ = (N′,E′) be
a chain with depth(T) = |N′|. By Lemma 3, there exists a
homomorphism h1 : N → N′ of T to C′ and a homomorphism
h2 : N′ → N of C′ to T . Hence, by Lemma 2, we have, for
every navigational expression e′ in N (F), e〈T 〉 6= ∅ if and only if
e〈C′〉 6= ∅. As a consequence, we can conclude that no navigational
expression in N (F) can distinguish between trees and chains of
equal depth.

Let C = (N,E) and C′ = (N′,E′) be chains such that |N| <
|N′|. By Lemma 3, there exists a homomorphism h : N → N′

of C to C′. Hence, by Lemma 2, we have, for every navigational
expression e′ in N (F), e〈C〉 6= ∅ implies e〈C′〉 6= ∅. As a
consequence, we can conclude that when a navigational expression
holds on a chain, then it also holds on every chain of greater depth.

Let e be a navigational expression in N (F). We choose C =
(N,E) to be the chain with minimum depth such that e〈C〉 6= ∅.
If no such chain exists, then, by the two properties shown above, e
is boolean-equivalent to ∅. Since C is also the chain with minimum
depth such that Ek〈C〉 6= ∅, with k = |N| − 1, we may conclude,
by the two properties shown above, that Ek and e are boolean-
equivalent.

From a closer examination of the previous proof, the following
result readily follows.

Corollary 1. Let F ⊆ {+, π,∩}. On unlabeled trees N (F) can
only express queries that are boolean-equivalent to either ∅ or
navigational expressions of the form Ek.

Corollary 2. Let F ⊆ {+, π,∩}. On unlabeled chains we have
N (π) �b N (F).

Proof (sketch). Let e be the expression π2[E]◦E ◦π1[E]. If a chain
C has depth two, then we have e〈C〉 6= ∅. For all chains C′ with a
depth other than two, we have e〈C′〉 = ∅. In Corollary 1 we already
showed that every expression inN (F) is boolean-equivalent to ∅ or
Ek, which are both boolean-inequivalent to e.

Besides the above results, we use homomorphisms to show that
N () and N (+) cannot properly distinguish between labeled trees
and labeled chains. This result is then used to show that, on labeled
tree,N () andN (+) cannot express all boolean queries expressible
byN (π):

Lemma 4. Let F ⊆ {+}. Let e be a navigational expression in
N (F). If e does not utilize the operator ∅, then there exists a labeled
chain C such that e〈C〉 6= ∅.

Proposition 3. Let F ⊆ {+}. On labeled trees we have N (π) �b
N (F).

Proof. Let `1 and `2 be two edge-labels and let e = π1[`1] ◦
π1[`2] be a navigational expression in N (π). On labeled trees,
this expression evaluates to true only if a node has two distinct
outgoing edges labeled with `1 and `2, respectively. Hence, for all
chains C = (N,E), we have e〈C〉 = ∅. As e never evaluates to
true on chains, we use Lemma 4 to conclude that no navigational
expression inN (F) is boolean-equivalent to e.

3.3 Automaton-based results
Observe thatN (+) and the regular path queries [1] are equivalent:
queries in these query languages select pairs of nodes m,n such
that there is a directed path from m to n whose labeling satisfies
some regular expression. In the case of trees, there is a unique path
from m to n which yields a strong relation between N (+) and
regular expressions. As a consequence, we can adapt results from
automata theory [17] in a relative straightforward way to prove that
N (+,∩, \) �p N (+).
Example 2. We can, for example, rewrite the navigational expres-
sions

[
`3
]+ ∩ [`7]+ and

[
`3
]+ \ [`7]+ to path-equivalent naviga-

tional expressions that do not use ∩ or \:[
`3
]+ ∩ [`7]+ ≡ [`21]+ ;[

`3
]+ \ [`7]+ ≡ (`3 ∪ `6 ∪ `9 ∪ `12 ∪ `15 ∪ `18) ◦ [`7]+ .

We extend these automata-based techniques to the languages
N (F) with F ⊆ {+, π, π} by introducing conditions on automaton
states. We use these extended automata to prove thatN (F) is closed
under ∩ andN (F) is closed under \.
Definition 5 (Condition). A navigational expression e is a condi-
tion if, for every labeled tree T , we have e〈T 〉 ⊆ id〈T 〉.

Here, we only consider conditions of the form ∅, id, π1[e′],
π2[e′], π1[e′], or π2[e′], with e′ a navigational expression.

Definition 6 (Condition automaton). A condition automaton is a
7-tupleA = (S,Σ, C, I, F, δ, γ), where S is a set of states, Σ a set
of transition labels,C a set of condition expressions, I ⊆ S a set of
initial states, F ⊆ S a set of final states, δ ⊆ S × (Σ ∪ {id})× S
the transition relation, and γ ⊆ S × C the state-condition relation.
We denote γ(q) = {c | (q, c) ∈ γ}.

Let F ⊆ {+, π, π}. We say that A is F-free if every condition
in C is a navigational expression inN ({+, π, π} \ F), we say that
A is loop-free if the transition relation δ ofA is acyclic, and we say
that A is id-transition free if δ ⊆ S × Σ× S.

Example 3. Consider the condition automatonA = (S,Σ, C, I, F,
δ, γ) with

S = {q1, q2, q3, q4};
Σ = {`1, `2, `3};
C = {id, π1

[
`1

2], π2

[
`2

3]};
I = {q1, q4};
F = {q3, q4};
δ = {(q1, `1, q2), (q1, `3, q4), (q2, `2, q2), (q2, `2, q3)}; and

γ = {(q1, id), (q2, π1

[
`1

2]), (q2, π2

[
`2

3])}.
This has been visualized in Figure 3. Using this visualization, it
is easy to verify that the condition automaton is not loop-free, is
{π,+}-free, and is id-transition free.

Definition 7 (Semantics of condition automata). Let G = (N,E)
be a graph and letA = (S,Σ, C, I, F, δ, γ) be a condition automa-
ton.

`1

`3
`2

`2q1 q2 q3

q4

{id} {π1

[
`1

2
]
, π2

[
`2

3
]
} {}

{}

Figure 3. An example of a condition automaton.

Navigational language Class of condition automata
N () {+, π, π}-free and loop-free.
N (π) {+, π}-free and loop-free.
N (π, π) {+}-free and loop-free.
N (+) {π, π}-free.
N (+, π) {π}-free.
N (+, π, π) no restrictions.

Table 1. Navigational languages and the corresponding class of
condition automata.

We define the condition expression of state q ∈ S, denoted by
•(q), as follows:

•(q) =

{
id if γ(q) = ∅;
c1 ◦ . . . ◦ cn if γ(q) = {c1, . . . , cn}.

Since each c ∈ γ(q) is a condition, the particular ordering of
c1, . . . , cn in the construction of •(q) does not matter: each order-
ing of the conditions will produce navigational expressions that are
path-equivalent to each other. We say that a node n ∈ N satisfies
state q ∈ S if (n, n) ∈ •(q)〈G〉.

A run of A on G is a sequence

(q0, n0)`0(q1, n1)`1 . . . (qi−1, ni−1)`i−1(qi, ni),

where q0, . . . , qi ∈ S, n0, . . . , ni ∈ N, `0, . . . , `i ∈ Σ ∪ {id},
and the following conditions hold:

1. for all 0 ≤ j ≤ i, nj satisfies qj ;
2. for all 0 ≤ j < i, (qj , `j , qj+1) ∈ δ; and
3. for all 0 ≤ j < i, (nj , nj+1) ∈ `j〈T 〉.

We say that A accepts node pair (m,n) ∈ N × N if there
exists a run (q0,m)`0 . . . (qi, n) of A on G with q0 ∈ I and
qi ∈ F . We define the evaluation of A on G, denoted by A〈〈G〉〉,
as A〈〈G〉〉 = {(m,n) | A accepts (m,n)}. Using path query
semantics, A on G evaluates to A〈〈G〉〉, and using boolean query
semantics, A on G evaluates to the truth value of A〈〈G〉〉 6= ∅.
Example 4. Consider the condition automaton of Example 3,
shown in Figure 3. By carefully examining the automaton, one can
conclude that it is path-equivalent to the navigational expression

`1 ◦ π1

[
`1

2] ◦ π2

[
`2

3] ◦ [`2 ◦ π1

[
`1

2] ◦ π2

[
`2

3]]∗ ◦ `2 ∪ `3 ∪ id.

Our first goal is to show the path-equivalence of N (F), F ⊆
{+, π, π}, with a restricted class of condition automata, as summa-
rized in Table 1. To this end, we first adapt standard closure proper-
ties for finite automata under composition, union, and Kleene plus
to the setting of condition automata:

Proposition 4. Let F ∈ {+, π, π} and let A1 and A2 be F-free
condition automata. There exists F-free condition automata A◦,
A∪, and A+ such that, for every tree T , we have A◦〈〈T 〉〉 =

e Condition automaton
∅ A = ({v, w},Σ, ∅, {v}, {w}, ∅, ∅)
id A = ({v, w},Σ, ∅, {v}, {w}, {(v, id, w)}, ∅)
` A = ({v, w},Σ, ∅, {v}, {w}, {(v, `, w)}, ∅)
π1[e′] A = ({v},Σ, {π1[e′]}, {v}, {v}, ∅, {(v, π1[e′])})
π2[e′] A = ({v},Σ, {π2[e′]}, {v}, {v}, ∅, {(v, π2[e′])})
π1[e′] A = ({v},Σ, {π1[e′]}, {v}, {v}, ∅, {(v, π1[e′])})
π2[e′] A = ({v},Σ, {π2[e′]}, {v}, {v}, ∅, {(v, π2[e′])})

Table 2. Basic building blocks used by the translation from nav-
igational expressions to condition automata. In the table, ` is an
edge-label.

A1〈〈T 〉〉 ◦ A2〈〈T 〉〉, A∪〈〈T 〉〉 = A1〈〈T 〉〉 ∪ A2〈〈T 〉〉, and A+〈〈T 〉〉 =
[A1〈〈T 〉〉]+. The condition automata A◦ and A∪ are loop-free
whenever A1 and A2 are loop-free.

Proposition 5. Let F ⊆ {+, π, π}. The class of condition au-
tomata specified forN (F) in Table 1 is path-equivalent withN (F).

Proof (sketch). Let Σ be the set of all relevant edge-labels. Let e
be a navigational expression inN (F). We translate e to a condition
automaton using structural induction. The base cases are described
in Table 2. The inductive cases are expressions of the form e =
e1 ◦ e2, e = e1 ∪ e2, or e = [e1]+ with e1 and e2 navigational
sub-expressions. For these cases, we use the constructions needed
to prove Proposition 4.

Conversely, let A = (S,Σ, C, I, F, δ, γ) be a condition au-
tomaton. Let v, w /∈ S be two distinct fresh states. Let A′ =
(S∪{v, w},Σ, C, {v}, {w}, δ∪δv,w, γ) with δv,w = {(v, id, q) |
q ∈ I} ∪ {(q, id, w) | q ∈ F} be a condition automaton that is
path-equivalent toA and having only a single initial state and a sin-
gle final state. We translateA′ into a navigational expression using
Algorithm 1.

Algorithm 1 From condition automaton to navigational expression
1: We mark each state q ∈ S ∪ {v, w}: M [qi] := true
2: We construct navigational expressions eq,r between state q ∈
S ∪ {v, w} and r ∈ S ∪ {v, w} and initialize

eq,r :=
⋃

(q,`,r)∈δ∪δv,w

•(q) ◦ ` ◦ •(r),

with eq,r := ∅ if there are no transitions between q and r
3: while ∃q (q ∈ S) ∧ (M [q] = true) do
4: Choose q with (q ∈ S) ∧ (M [q] = true)
5: for p1, p2 ∈ S ∪ {v, w} with q /∈ {p1, p2} do
6: ep1,p2 := ep1,p2 ∪ ep1,q ◦ [eq,q]

∗ ◦ eq,p2
7: If applicable, remove ∅ from ep1,p2 or reduce ep1,p2 to ∅
8: end for
9: Unmark state q: M [q] := false

10: end while
11: return ev,w

The following invariants hold for Algorithm 1:

1. Every expression eq1,q2 , with q1, q2 ∈ S ∪ {v, w}, is a naviga-
tional expression inN (F).

2. If (m,n) ∈ eq1,q2〈T 〉, with q1, q2 ∈ S ∪ {v, w}, then there
exists a run (q1,m)` . . . (q2, n) of A′ on T that performs at
least one transition.

3. If (q1, n1)`1 . . . (qi, ni) is a run of A′ on T with M [q2] =
· · · = M [qi−1] = false that performs at least one transition,
then we have (n1, ni) ∈ eq1,qi〈T 〉.

`

`

`

`

`

Figure 4. Two simple graphs. Only on the graph to the left, the
navigational expression `2 ∩ ` evaluates to true.

As v 6= w, v is the only initial state, andw is the only final state,
each accepting run of A′ performs at least one transition. Hence
Invariants 2 and 3 imply that A′ and the resulting navigational
expression ev,w are path-equivalent. Invariant 1 implies that the
resulting navigational expression is, as required, inN (F).

We will use condition automata to remove∩ and \. The standard
approach to constructing the intersection of two finite automata is
by making their cross-product. In a relatively straightforward man-
ner, we can apply a similar cross-product construction to condition
automata if they are id-transition free. Observe that the id-labeled
transitions fulfill a similar role as empty-string-transitions in finite
automata and, as such, can be removed, which we show next.

Definition 8 (Identity pair). Let A be a condition automaton. The
pair (q, {q, q1, . . . , qi}) is an identity pair of A if there exists a
path qidq′1 . . . idq′j in A with {q, q1, . . . , qi} = {q, q′1, . . . , q′j}.
Lemma 5. Let F ∈ {+, π, π} and let A be an F-free condition
automaton. There exists an id-transition free, F-free condition au-
tomatonAid that is path-equivalent toA. The condition automaton
Aid is loop-free whenever A is loop-free.

Proof (sketch). Let A = (S,Σ, C, I, F, δ, γ) be an F-free condi-
tion automaton. We construct Aid = (Sid,Σ, C, Iid, Fid, δid, γid)
with

Sid = {(q,Q) | (q,Q) is an identity pair of A};
Iid = {(q,Q) | ((q,Q) ∈ Sid) ∧ (q ∈ I)};
Fid = {(q,Q) | ((q,Q) ∈ Sid) ∧ (Q ∩ F 6= ∅)};
δid = {((p, P), `, (q,Q)) | ((p, P) ∈ Sid) ∧ (` ∈ Σ) ∧

((q,Q) ∈ Sid) ∧ (∃p′ (p′ ∈ P) ∧ (p′, `, q) ∈ δ)};
γid = {((q,Q), c) | ((q,Q) ∈ Sid) ∧

(∃q′ (q′ ∈ Q) ∧ (c ∈ γ(q′)))}.

Even if we can construct the cross-product of two condition
automata, this does not directly imply that the cross-product is
path-equivalent to the intersection of the condition automata. For
automata representing navigational query languages, there exist
situations in which the cross-product construction is not equivalent
to the intersection of the corresponding regular languages:
Example 5. Let `2∩` be a navigational expression. This expression
evaluates to non-empty on the graph of Figure 4, left, but not
on the graph of Figure 4, right. If we directly translate `2 and `
to finite automata and construct their cross-product, the resulting
automaton would represent the empty language, which is obviously
not equivalent to `2 ∩ ` on the graph in Figure 4, left.

On trees, however, the situation of Example 5 cannot occur, as a
directed path between two nodes in a tree is always unique. This ob-
servation is crucial in showing that the cross-product construction
on condition automata works on trees. The lemma below formal-
izes this observation:

Lemma 6. Let A1 and A2 be id-transition free condition au-
tomata and let T = (N,E) be a tree. If there exists a run
(p1, n1)`11 . . . `

1
i1(q1, ni1+1) of A1 on T and there exists a run

(p2,m1)`21 . . . `
2
i2(q2,mi2+1) of A2 on T with n1 = m1 and

ni1+1 = mi2+1, then i1 = i2 = i and, for all 1 ≤ j ≤ i, `1j = `2j
and nj = mj .

This allows us to prove the following:

Proposition 6. Let F ∈ {+, π, π} and let A1 and A2 be F-free
condition automata. There exists an F-free condition automaton
A∩ such that, for every tree T , we have A∩〈〈T 〉〉 = A1〈〈T 〉〉 ∩
A2〈〈T 〉〉. The condition automatonA∩ is loop-free wheneverA1 or
A2 is loop-free.

Proof (sketch). Let A1 = (S1,Σ1, C1, I1, F1, δ1, γ1) and A2 =
(S2,Σ2, C2, I2, F2, δ2, γ2) be condition automata. By Lemma 5,
we may assume thatA1 andA2 are id-transition free. Without loss
of generality, we may also assume that S1 ∩ S2 = ∅. We construct
A∩ = (S1 × S2,Σ1 ∪ Σ2, C1 ∪ C2, I1 × I2, F1 × F2, δ∩, γ∩)
where

δ∩ = {((p1, q1), `, (p2, q2)) | (p1, `, p2) ∈ δ1 ∧ (q1, `, q2) ∈ δ2};
γ∩ = {((p, q), c) | c ∈ γ1(p) ∨ c ∈ γ2(q)}.
Let T = (N,E) be a tree and let v, w ∈ N be a pair of
nodes. Let (p1, n1)`11 . . . `

1
i1(q1, ni1+1) and (p2,m1)`21 . . . `

2
i2

(q2,mi2+1) be runs of A1 on T and A2 on T , respectively,
with p1 ∈ I1, q1 ∈ F1, p2 ∈ I2, and q2 ∈ F2, in which
v = n1 = m1 and w = ni1+1 = mi2+1. Using Lemma 6,
we conclude that these runs exist if and only if i = i1 = i2
and, for all 1 ≤ j ≤ i, lj = `1j = `2j . But then, there also
exists a run ((p1, p2), v)`1 . . . `i((q1, q2), w) of A∩ on T with
(p1, p2) ∈ I1 × I2 and (q1, q2) ∈ F1 × F2.

Usually, the difference of two finite automataA1 andA2 is con-
structed by first constructing the complement of A2, and then con-
structing the intersection of A1 with the resulting automaton. We
cannot use such a complement construction for condition automata:
the complement of a downward binary relation (represented by a
condition automaton) is not a downward binary relation. Observe,
however, that it is not necessary to consider the full complement
when constructing the difference of two condition automata. As the
difference of two downward binary relations is itself a downward
relation, we can restrict ourselves to the downward complement of
a binary relation.

Let T = (N,E) be a tree. We define the downward comple-
ment of a binary relation R ⊆ N×N, denoted by R↓, as

R↓ = {(m,n) | (m,n) /∈ R ∧ (m,n) ∈ [ε]∗〈T 〉},
in which ε =

⋃
`∈Σ `. Indeed, ifA1 andA2 are condition automata

and T is a tree, then we have A1〈〈T 〉〉 \ A2〈〈T 〉〉 ≡ A1〈〈T 〉〉 ∩
A2〈〈T 〉〉↓. Hence, we only need to show that condition automata
are closed under downward complement. The construction of the
downward complement uses deterministic condition automata:

Definition 9 (Deterministic condition automaton). The condition
automaton A = (S,Σ, C, I, F, δ, γ) is deterministic if it is id-
transition free and if it satisfies the following condition: for every
tree T = (N,E) and for every pair of nodes m,n with m an
ancestor of n, there exists exactly one run (q,m)` . . . (p, n) of A
on T with q ∈ I .2

Example 6. In Figure 5 we visualize a conditional automaton
that is deterministic (assuming Σ = {`1, `2}). This deterministic
condition automaton accepts node pairs (m,n), m 6= n, if m
satisfies π2

[
`1

3
]

and if there is a path from m to n whose labeling
matches the regular expression `1 [`2]∗ `1. It also accepts node pairs
(n, n) if n does not satisfy π2

[
`1

3
]
.

2 If we make abstraction of the condition expressions, then Definition 9
reduces to the classical definition of a finite deterministic automaton.

`1

`1, `2

`2 `2

`1

`1, `2

`1, `2

q1 q2 q3

q4 q5

{π2

[
`1

3
]
} {} {}

{π2

[
`1

3
]
}

Figure 5. An example of a deterministic condition automaton.

In the construction of deterministic condition automata we shall
use the condition-complement of a condition, defined as follows:

ccompl(e) =

∅ if e = id;

id if e = ∅;
π1[e′] if e = π1[e′];

π2[e′] if e = π2[e′];

π1[e′] if e = π1[e′];

π2[e′] if e = π2[e′].

Observe that the condition complement of a projection expres-
sion is a coprojection expression, and vice-versa. We extend the
definition of condition-complement to sets of conditions: if S is a
set of conditions, then ccompl(S) = {ccompl(e) | e ∈ S}.

Lemma 7. Let F ∈ {+, π, π} and let A be an F-free condition
automaton. There exists a deterministic condition automaton AD
that is path-equivalent toA. The condition automatonAD is {+}-
free if + /∈ F and {π, π}-free if π, π /∈ F.

Proof (sketch). Let A = (S,Σ, C, I, F, δ, γ) be a condition au-
tomaton. By Lemma 5, we can assume that A is id-transition free.
We construct AD = (SD,Σ, C ∪ ccompl(C), ID, FD, δD, γD),
where SD , ID , and δD are constructed by Algorithm 2, and

FD = {(Q,V) | (Q,V) ∈ SD ∧Q ∩ F 6= ∅};
γD = {((Q,V), c) | (Q,V) ∈ SD ∧

(c ∈ V ∨ c ∈ ccompl((C − V)))}.

Both determinism of AD and path-equivalence of AD and A
are guaranteed, as this construction satisfies the following proper-
ties:

1. There exists exactly one V ⊆ C such that

(n, n) ∈ •(V ∪ ccompl((C \ V)))〈T 〉.

2. There exists exactly one state (P, V) ∈ ID such thatm satisfies
(P, V).

3. Let (P, V) ∈ SD be a state such thatm satisfies (P, V). If there
exists a directed path from m to n, then there exists exactly one
run ((P, V),m)` . . . ((Q,W), n) of AD on T .

4. If there exists a run (q1,m)` . . . (qi, n) ofA on T with q1 ∈ I ,
then there exists a run ((Q1, V1),m)` . . . ((Qi, Vi), n) of AD
on T with (Q1, V1) ∈ ID , and, for all 1 ≤ j ≤ i, qj ∈ Qj .

5. If there exists a run ((Q1, V1),m)` . . . ((Qi, Vi), n) of AD
on T with Qi 6= ∅, then, for all qi ∈ Qi, there exists a
run (q1,m)` . . . (qi, n) of A on T with, for all 1 ≤ j < i,
qj ∈ Qj .

Algorithm 2 Translation to deterministic condition automaton
1: Let SD , ID , and new be empty sets of states
2: Let δD be an empty transition relation
3: for V ⊆ C do
4: Q := {q | q ∈ I ∧ γ(q) ⊆ V }
5: Add new state (Q,V) to SD , ID , and new
6: end for
7: while new 6= ∅ do
8: Take and remove state (Q,V) from new
9: for ` ∈ Σ do

10: P := {p | ∃q q ∈ Q ∧ (q, `, p) ∈ δ}
11: for W ⊆ C do
12: P ′ := {p | p ∈ P ∧ γ(p) ⊆W}
13: if (P ′,W) /∈ SD then
14: Add new state (P ′,W) to SD and new
15: end if
16: Add new transition ((Q,V), `, (P ′,W)) to δD
17: end for
18: end for
19: end while

Proposition 7. Let F ∈ {+, π, π} and letA be an F-free condition
automaton. There exists a condition automaton A′ such that, for
every tree T , we haveA′〈〈T 〉〉 = A〈〈T 〉〉↓. The condition automaton
A′ is {+}-free if + /∈ F and {π, π}-free if π, π /∈ F.

Proof. Let A′′ = (S′′,Σ′′, C′′, I ′′, F ′′, δ′′, γ′′) be the determin-
istic condition automaton equivalent to A. We construct A′ =
(S′′,Σ′′, C′′, I ′′, S′′ \ F ′′, δ′′, γ′′).

Corollary 3. Let A1 and A2 be condition automata. There exists
a condition automaton A\ such that, for every tree T , we have
A\〈〈T 〉〉 = A1〈〈T 〉〉\A2〈〈T 〉〉. The condition automatonA\ is {+}-
free if + /∈ F, {π, π}-free if π, π /∈ F, and loop-free whenever A1

is loop-free.

Proof. SinceA1〈〈T 〉〉\A2〈〈T 〉〉 = A1〈〈T 〉〉∩A2〈〈T 〉〉↓, we can apply
Proposition 7 and Proposition 6 to construct A\.

Proposition 6 and Corollary 3 only remove intersection and
difference at the highest level: these results ignore the expressions
inside conditions. To fully remove intersection and difference, we
use an induction argument on the depth of conditions.

Let e be an expression in N (+, π, π,∩, \). We define the
condition-depth of e, denoted by cdepth(e), as

cdepth(e) =

0 if e ∈ {∅, id};
0 if e = `, with ` an edge-label;
cdepth(e′)

if e = [e′]
+

;

cdepth(e′) + 1

if e ∈ {π1[e′], π2[e′], π1[e′], π2[e′]};
max(cdepth(e1), cdepth(e2))

if e ∈ {e1 ◦ e2, e1 ∪ e2,

e1 ∩ e2, e1 \ e2}.

Theorem 3. Let F ⊆ {+, π, π,∩, \}. On labeled trees we have
N (F) �p N (F \ {∩, \}).

Proof (sketch). We use induction on both the condition-depth of ex-
pressions and on the length of expressions (of a specific condition-
depth). Thereto, we use Proposition 5 to translate navigational sub-
expressions in N (F) to condition automata. Given two condition
automata representing navigational sub-expressions e1 and e2, we

use Proposition 4, Proposition 6, and Corollary 3 to construct con-
dition automata representing navigational sub-expressions [e1]+,
e1 ◦ e2, e1 ∪ e2, e1 ∩ e2, and e1 \ e2. Finally, we use Proposition 5
to translate the resulting condition automaton back to a navigational
expression inN (F \ {∩, \}).

Observe that Theorem 3 does not strictly depend on the graph
being a tree: indirectly, Theorem 3 depends on Lemma 6, which
hold for all graphs in which each pair of nodes is connected by at
most one directed path. Hence, the results of Theorem 3 can be
generalized to, for example, forests.

The concept of condition automata to represent and manipu-
late navigational expressions can also be used to simplify boolean
queries. We can, for example, use condition automata to remove
π-conditions from any expression inN (+, π) or inN (π).

We define the condition-depth of a {π}-free condition au-
tomaton A = (S,Σ, C, I, F, δ, γ), denoted by cdepth(A), as
cdepth(A) = max{cdepth(c) | c ∈ C}. We define the
condition-weight of A, denoted by cweight(A), as

cweight(A) = |{c | c ∈ C ∧ cdepth(c) = cdepth(A)}|.

Lemma 8. Let A be a {π}-free and id-transition free condition
automaton. If cdepth(A) > 0, then there exists a {π}-free and
id-transition free condition automaton Aπ such that

1. for every labeled chain C, we have A〈〈C〉〉 = ∅ if and only if
Aπ〈〈C〉〉 = ∅; and

2. cdepth(A) > cdepth(Aπ) or cdepth(A) = cdepth(Aπ) ∧
cweight(A) > cweight(Aπ).

The condition automaton Aπ is loop-free and {+}-free whenever
A is loop-free and {+}-free.

Proof (sketch). LetA = (S,Σ, C, I, F, δ, γ) be a {π}-free and id-
transition free condition automaton. Choose a condition c ∈ C with
cdepth(A) = cdepth(c). Let A′ = (S′,Σ′, C′, I ′, F ′, δ′, γ′) be
a {π}-free and id-transition free condition automaton equivalent to
e′. If we constructA′ in the canonical way, we have cdepth(A′) =
cdepth(e′). Let ε /∈ S ∪ S′ be a fresh state. We define the power
set of set S, denoted by P(S), as P(S) = {S′ | S′ ⊆ S}. In the
following, we use the values 1 and 2 and the variable i, i ∈ {1, 2},
to indicate that definitions depend on the type i of the condition
c = πi[e

′]. We define Aπ = (Sπ,Σπ, Cπ, Iπ, Fπ, δπ, γπ) for
c = π1[e′] as follows:

Sc = {q | c ∈ γ(q)};
S¬c = S \ Sc;
S¬1 = {(q,Q) | q ∈ Sc ∧Q ⊆ S′ ∧Q ∩ I ′ = ∅};
Sπ =

(
S × P(S′)

)
\ S¬i ∪ {ε} ×

(
P(S′) \ ∅

)
;

Σπ = Σ;

Cπ = C \ {c} ∪ C′;
I1 = {(q, {q′}) | q ∈ Sc ∩ I ∧ q′ ∈ I ′};
Iπ = {(q, ∅) | q ∈ S¬c ∩ I} ∪ Ii;
F1 = {(q,Q) | q ∈ S¬c ∩ F ∧ ∅ ⊂ Q ⊆ F ′}

∪ {(q,Q) | q ∈ Sc ∩ F ∧ ∅ ⊂ Q ⊆ F ′ ∩ I ′}
∪ {(ε,Q) | ∅ ⊂ Q ⊆ F ′};

Fπ = {(q, ∅) | q ∈ S¬c ∩ F} ∪ Fi;
δP(S′) = {(P, `,Q) | P ⊆ S′ ∧ ` ∈ Σπ ∧Q ⊆ S′ ∧

∀p p /∈ P ∨ (∃q q ∈ Q ∧ (p, `, q) ∈ δ′) ∧
∀q q /∈ Q ∨ (∃p p ∈ P ∧ (p, `, q) ∈ δ′)};

δ1,b = {((p, P ∪ P ′), `, (q,Q)) |
(p, P ∪ P ′) ∈ Sπ ∧ P ′ ⊆ F ′ ∧ (q,Q) ∈ Sπ ∧
((p, `, q) ∈ δ ∨ ((p = ε ∨ p ∈ F) ∧ q = ε)) ∧
(P, `,Q) ∈ δP(S′)};

δ1,c = {((p, P ∪ P ′), `, (q,Q ∪ {q′})) |
(p, P ∪ P ′) ∈ Sπ ∧ (q,Q ∪ {q′}) ∈ Sπ ∧
(p, `, q) ∈ δ ∧ (P, `,Q) ∈ δP(S′) ∧
q ∈ Sc ∧ q′ ∈ I ′ ∧ P ′ ⊆ F ′};

δπ = δi,b ∪ δi,c;
γπ = {((q,Q), c′) | (q,Q) ∈ Sπ ∧

(c′ ∈ γ(q) ∨ (∃q′ q′ ∈ Q ∧ c′ ∈ γ′(q′)))}.
For c = π2[e′], the construction is analogous.

Lemma 8 only removes a single π-condition. To fully remove
π-conditions, we repeat these removal steps until no π-conditions
are left. This leads to the following result:

Theorem 4. Let F ⊆ {+, π}. On labeled chains we haveN (F) �b
N (F \ {π}).

Proof. We use Proposition 5 to translate a navigational expression
to a condition automaton A, then we repeatedly apply Lemma 8
to remove conditions, and, finally, we use Proposition 5 to trans-
late back to a navigational expression inN (F \ {π}). Observe that
only a finite number of condition removal steps onA can be made,
as Lemma 8 guarantees that either cdepth(A) strictly decreases
or else cdepth(A) does not change and cweight(A) strictly de-
creases.

We observed that Theorem 3 does not strictly depend on the
graph being a tree. A similar observation holds for Theorem 4:
for boolean queries, we can remove a π-condition whenever the
condition checks a part of the graph that does not branch. This is
the case for π2-conditions on trees, as trees do not have branching
in the direction from a node to its ancestors. For π1, this observation
does not hold, as is illustrated by the proof of Proposition 3.

Proposition 8. Let F ⊆ {+}. On labeled trees we have N (F ∪
{π2}) �b N (F), butN (F ∪ {π1}) �b N (F).

3.4 Results using first-order logic
For all N (F) with F ⊆ {π, π,∩, \}, it is straightforward to show
that every expression in N (F) can be expressed by a first-order
logic formula over the structure (N;E). Moreover, as N (F) is es-
sentially a fragment of the calculus of relations, every expression
can be expressed in FO[3], the language of first-order logic formu-
lae using at most three variables [13, 22]. Exploring this relation-
ship yields the following two results involving +:

Proposition 9. Let F ⊆ {π, π,∩, \}. On unlabeled chains we have
N (+) �p N (F), and on labeled chains we haveN (+) �b N (F).

Proof. Using well-known results on the expressive power of first-
order logic [18], we conclude that no navigational expression in
N (F) is path-equivalent to [E]+ and that no navigational expres-
sion is boolean-equivalent to `1 ◦ [`2 ◦ `2]+ ◦ `1.

Proposition 10. Let + /∈ F. On unlabeled chains and trees we
haveN (F ∪ {+}) �b N (F) if and only if π /∈ F.

Proof. For the cases with π /∈ F, we refer to Theorem 2. If
π ∈ F, then we conclude that no navigational expression inN (F) is
boolean-equivalent to π2[E] ◦ [E ◦ E]+ ◦ π1[E], using well-known
results on the expressive power of first-order logic [18].

4. Related Work
Tree query languages have been widely studied, especially in the
setting of the XML data model using XPath-like query languages.
For an overview, we refer to Benedikt et al. [2]. Due to the large
body of work on querying of tree-based data models, we only point
to related work that studies similar expressiveness problems.

Benedikt et al. [3] study the expressive power of the XPath
fragments with and without the parent axis, with and without
ancestor and descendant axes, and with and without qualifiers
(which are π1-conditions). Furthermore, they study closure proper-
ties of these XPath fragments under intersection and complement.
As such, the work by Benedikt et al. answers similar expressiveness
questions as our work does. The Core XPath fragments studied by
Benedikt et al. do, however, not include non-monotone operators
such as π and \ and allow only for a very restricted form of tran-
sitive closure, required to define the ancestor and descendant
axis. Hence, queries such as [` ◦ `]+ and `1 ◦ [`2 ◦ `2]+ ◦ `1, used
in Proposition 9, are not expressible in these XPath fragments.

When accounting for the difference between the node-labeled
tree model used by Benedikt et al. [3] and the edge-labeled tree
model used here, and when restricting ourselves to the downward
fragments as studied here, we see that all relevant XPath fragments
of Benedikt et al., fragment Xr,[] and its fragments, are strictly
less expressive than the navigational query language N (+, π1).
Furthermore, we observe that X is path-equivalent to N () and
that X[] is path-equivalent to N (π1). As such, our work extends
some of the results of Benedikt et al. to languages that have a more
general form of transitive closure.

Conditional XPath, Regular XPath, and Regular XPath≈ [19,
20, 23, 24] are studied with respect to a sibling-ordered node-
labeled tree data model. The choice of a sibling-ordered tree data
model makes these studies incomparable with our work: on sibling-
ordered trees, Conditional XPath is equivalent with FO[3], and
FO[3] is equivalent to general first-order logic [19]. This result does
not extend to our tree data model: on our tree data model, FO[3]
cannot express simple first-order counting queries such as

∃n∃c1∃c2∃c3∃c4 E(n, c1) ∧ E(n, c2) ∧ E(n, c3) ∧ E(n, c4) ∧
(c1 6= c2) ∧ (c1 6= c3) ∧ (c1 6= c4) ∧

(c2 6= c3) ∧ (c2 6= c4) ∧ (c3 6= c4),

which is true on all trees that have a node with at least four
distinct children. Although N (+, π, π,∩, \) is not a fragment
of FO[3], due to the inclusion of the transitive closure opera-
tor, a straightfroward brute-force argument shows that not even
N (+, π, π,∩, \) can express these kinds of counting queries. With
an ordered sibling axis, as present in the sibling-ordered tree
data model, the above counting query is boolean-equivalent to
sibling ◦ sibling ◦ sibling.

Due to these differences in the tree data models used, the clo-
sure properties under intersection and complementation for Condi-
tional XPath and Regular XPath≈ cannot readily be translated to
closure properties for the navigational query languages we study.
Moreover, even if the closure properties for Conditional XPath and
Regular XPath≈ could be translated to our setting, then these re-
sults would only cover a single fragment.

Lastly, the XPath algebra of Gyssens et al. [12, 15], when re-
stricted to the downward fragment, corresponds to the navigational
query language N (π,∩, \), and the positive algebra of Wu et
al. [26], when restricted to the downward fragment, corresponds
to the navigational query language N (π,∩). Although these stud-
ies include some expressiveness results, these results are dependent
on the availability of a parent-axis (or a converse operator), and,
thus, these results are not relevant for our study.

On graphs, the navigational query languages (both labeled an
unlabeled) have already been studied in full detail [8–11]. There
has also been some work on the expressive power of variations of
the regular path queries and nested regular path queries [1], which
are equivalent to fragments of the navigational query languages.
These results are all provided on general graphs. We were able to
strengthen several known separation results, by showing that they
already hold on very simple graphs, namely on chains and trees.

5. Conclusions and Directions for Future Work
This paper studies the expressive power of the downward navi-
gational query languages on trees and chains, both in the labeled
and in the unlabeled case. We were able to present the complete
Hasse diagrams of relative expressiveness, visualized in Figure 1.
In particular, our results show, for each fragment of the navigational
query languages that we study, whether it is closed under difference
and intersection when applied on trees. These results are shown
using the concept of condition automata to represent and manipu-
late navigational expressions. We also used condition automata to
prove that, on labeled chains, projections do not provide additional
expressive power for boolean queries.

The next step in this line of research is to explore common
non-downward operators, starting with including the converse of
the edge relation (which provides, among other things, the parent
axis of XPath, and, in combination with transitive closure, provides
the ancestor axis) and node inequality via the diversity operator.
Particularly challenging are the interactions with \ and di. We
conjecture, for example, that N (+, \, di) �b N (+, π,∩, di), but
this conjecture is still wide open, even on unlabeled chains.

Another direction is the study of languages with only one of the
projections (or one of the coprojections) as Proposition 8 shows
that in some cases adding only π1 or only π2 may affect the expres-
sive power. Indeed, various XPath fragments and the nested RPQs
only provide operators similar to π1. Another interesting avenue
of research is to explore the relation between the navigational ex-
pressions (and FO[3]) on restricted relational structures and FO[2],
the language of first-order logic formulae using at most two vari-
ables [14]. Our results for N (+, π,∩) on unlabeled trees already
hint at a significant overlap of FO[3] and FO[2] for boolean queries:
the query Ek can easily be expressed by FO[2] algebras with semi-
joins via En · · ·nE . A last avenue of research we wish to mention
is to consider other semantics for query-equivalence and other tree
data models, such as the root equivalence of Benedikt et al. [3] and
the ordered-sibling tree data model.

References
[1] P. Barceló. Querying graph databases. In Proceedings of the 32nd

Symposium on Principles of Database Systems, PODS ’13, pages 175–
188. ACM, 2013.

[2] M. Benedikt and C. Koch. XPath leashed. ACM Computing Surveys
(CSUR), 41(1):3:1–3:54, 2009.

[3] M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath
fragments. Theoretical Computer Science, 336(1):3–31, 2005.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau,
and J. Cowan. Extensible markup language (XML) 1.1 (second edi-
tion). W3C recommendation, W3C, 2006. http://www.w3.org/
TR/2006/REC-xml11-20060816.

[5] J. Clark and S. DeRose. XML path language (XPath) version
1.0. W3C recommendation, W3C, 1999. http://www.w3.org/TR/
1999/REC-xpath-19991116.

[6] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6), 1970.

[7] Ecma International. The JSON data interchange format, 1st edition
/ october 2013, 2013. http://www.ecma-international.org/
publications/standards/Ecma-404.htm.

[8] G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche,
D. Van Gucht, S. Vansummeren, and Y. Wu. Relative expressive
power of navigational querying on graphs. In Proceedings of the 14th
International Conference on Database Theory, ICDT ’11, pages 197–
207. ACM, 2011.

[9] G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche,
D. Van Gucht, S. Vansummeren, and Y. Wu. The impact of transitive
closure on the boolean expressiveness of navigational query languages
on graphs. In Foundations of Information and Knowledge Systems,
volume 7153 of Lecture Notes in Computer Science, pages 124–143.
Springer Berlin Heidelberg, 2012.

[10] G. H. L. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den
Bussche, D. Van Gucht, S. Vansummeren, and Y. Wu. Relative expres-
sive power of navigational querying on graphs. Information Sciences,
298:390–406, 2015.

[11] G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche,
D. Van Gucht, S. Vansummeren, and Y. Wu. The impact of transitive
closure on the expressiveness of navigational query languages on
unlabeled graphs. Annals of Mathematics and Artificial Intelligence,
73(1-2):167–203, 2015.

[12] G. H. L. Fletcher, M. Gyssens, J. Paredaens, D. Van Gucht, and
Y. Wu. Structural characterizations of the navigational expressiveness
of relation algebras on a tree. Journal of Computer and System
Science, to appear, 2015.

[13] S. Givant. The calculus of relations as a foundation for mathematics.
Journal of Automated Reasoning, 37(4):277–322, 2006.

[14] E. Grädel and M. Otto. On logics with two variables. Theoretical
Computer Science, 224(1–2):73–113, 1999.

[15] M. Gyssens, J. Paredaens, D. Van Gucht, and G. H. L. Fletcher. Struc-
tural characterizations of the semantics of XPath as navigation tool
on a document. In Proceedings of the Twenty-fifth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems,
PODS ’06, pages 318–327. ACM, 2006.

[16] S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C
recommendation, W3C, 2013. http://www.w3.org/TR/2013/
REC-sparql11-query-20130321.

[17] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation, 3th edition. Pearson,
2007.

[18] L. Libkin. Elements of Finite Model Theory. Springer Berlin Heidel-
berg, 2004.

[19] M. Marx. Conditional XPath. ACM Transactions on Database Sys-
tems, 30(4):929–959, 2005.

[20] M. Marx and M. de Rijke. Semantic characterizations of navigational
XPath. SIGMOD Record, 34(2):41–46, 2005.

[21] G. Schreiber and Y. Raimond. RDF 1.1 primer. W3C work-
ing group note, W3C, 2014. http://www.w3.org/TR/2014/
NOTE-rdf11-primer-20140624.

[22] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic,
6(3):73–89, 1941.

[23] B. ten Cate. The expressivity of XPath with transitive closure. In Pro-
ceedings of the Twenty-fifth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, PODS ’06, pages 328–337.
ACM, 2006.

[24] B. ten Cate and M. Marx. Navigational XPath: Calculus and algebra.
SIGMOD Record, 36(2):19–26, 2007.

[25] D. C. Tsichritzis and F. H. Lochovsky. Hierarchical data-base man-
agement: A survey. ACM Computing Surveys (CSUR), 8(1):105–123,
1976.

[26] Y. Wu, D. Van Gucht, M. Gyssens, and J. Paredaens. A study of a
positive fragment of path queries: Expressiveness, normal form and
minimization. The Computer Journal, 54(7):1091–1118, 2011.

