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Abstract Several established and novel applications motivate us to study the ex-
pressive power of navigational query languages on graphs, which represent binary
relations. Our basic language has only the operators union and composition, together
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with the identity relation. Richer languages can be obtained by adding other features
such as intersection, difference, projection and coprojection, converse, and the
diversity relation. The expressive power of the languages thus obtained cannot only
be evaluated at the level of path queries (queries returning binary relations), but
also at the level of Boolean or yes/no queries (expressed by the nonemptiness of an
expression). For the languages considered above, adding transitive closure augments
the expressive power not only at the level of path queries but also at the level of
Boolean queries, for the latter provided that multiple input relations are allowed.
This is no longer true in the context of unlabeled graphs (i.e., in the case where there
is only one input relation), however. In this paper, we prove that this is indeed not
the case for the basic language to which none, one, or both of projection and the
diversity relation are added, a surprising result given the limited expressive power
of these languages. In combination with earlier work (Fletcher et al. 2011, 2012),
this result yields a complete understanding of the impact of transitive closure on the
languages under consideration.

Keywords Boolean query · Transitive closure · Relation algebra · Unlabeled graph ·
Expressiveness

Mathematics Subject Classifications (2010) 03C07 · 05C60 · 68P15 · 68R10

1 Introduction

In previous work [11], the present authors studied the relative expressive power of
query languages on graphs (i.e., binary relations). They considered a basic language,
consisting of union, composition, and the identity relation, to which one or more
features can be added, such as intersection, set difference, projection, coprojection,
converse, and the diversity relation. We refer to the basic language to which all the
non-basic features have been added as the relation algebra.

A relation algebra expression can be seen as a function mapping the input binary
relation to a binary relation. We call such queries path queries because the result can
be interpreted as all the ways in which the input graph can be navigated in accordance
with the expression. By identifying nonemptiness with the Boolean value true and
emptiness with false, as is standard in database theory [2], we can also express yes/no
queries within this framework. To distinguish them from general path queries, we
shall refer to the latter as Boolean queries.

The present authors were able to establish the complete Hasse diagram for the
relative expressive power of the various relation algebra fragments, and this both
at the levels of (1) path queries and (2) Boolean queries, both for the cases where
the input graph is (1) labeled (i.e., may represent multiple binary relations) and
(2) unlabeled (i.e., represents a single relation).

This study was motivated by similar work on the expressive power of XPath
fragments as query languages for navigating on trees, which is now well understood
(e.g., [6, 9, 14, 19, 20, 26]). Motivated by data on the Web [1, 12] and new applications
such as dataspaces [13], Linked Data [7, 16], and RDF [23], it is natural to look at
similar navigational query languages for graphs. The languages we study are very
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natural and similar to languages already considered in the fields of description logics,
dynamic logics, arrow logics, and relation algebras [5, 8, 15, 17, 21, 24]. Moreover,
graph query languages have a rich history in database theory, in particular in the
context of object-oriented and semi-structured database systems. We refer to Angles
and Gutiérrez [4] for a comprehensive review.

In addition to what has been described above, we also investigated whether adding
transitive closure to a relation algebra fragment yields additional expressive power.
At the level of path queries, this is obviously the case for all fragments, as the
transitive closure of a binary relation is not expressible in FO [3], whereas the full
relation algebra is known to be equivalent to FO3, the three-variable fragment of
first-order logic [25]. We were also able to show [11] that adding transitive closure
does not result in a collapse at the level of Boolean queries, provided the input graph
is labeled (i.e., there may be several input relations). The argument used to prove this
could not be generalized to the Boolean queries on unlabeled graphs (i.e., on a single
input relation), however. With different arguments, we were able to show [10, 11]
that, for labeled graphs, there is still no collapse if the language to which transitive
closure is added has one of the operators set difference, intersection, coprojection,
or converse.

The purpose of the present paper is to show that in the remaining cases, i.e., if the
language under consideration is the basic language augmented with none, one, or
both of the features projection and diversity, adding transitive closure does not yield
more expressive power at the level of Boolean queries on unlabeled graphs. This
result completes our understanding of whether or not the relation algebra fragments
with transitive closure collapse to their counterparts without transitive closure at the
level of Boolean queries on unlabeled graphs.

To see the practical relevance of these results, consider the following example.
Facebook is a large social network which maintains a graph of people that are con-
nected via a friendship relationship. It is customary that people wish to communicate
with their friends, navigate recursively to friends of friends, etc. This navigation can
be expressed with path expressions in a suitable relation algebra fragment, either
with or without using transitive closure. In addition to navigation, certain topological
properties of the Facebook graph can be discovered. For example, one can discover
whether there are people whose friends are all friends of each other. Again, some
of these topological properties can be formulated as Boolean queries in a suitably
chosen relation algebra fragment, either with or without using transitive closure. The
proliferation of social networks is thus a real-world phenomenon to which our theory
applies.

From this perspective, the collapse results are very meaningful. To illustrate
this on our example, consider the very simple Boolean query asking if there are
people who are friends of friends of . . . friends of each other, which is expressed
by the transitive closure of the friends relation. Obviously, the answer to this query
is affirmative if and only if the answer to the query asking if there are people
who are friends of each other is affirmative. The latter query, of course, is simply
expressed by the friends relation, i.e., without transitive closure. The collapse results
indicate precisely for which of the languages under consideration such a collapse is
guaranteed.

As the collapse results were already presented in the conference version of this
paper [10], the emphasis of the current paper is on the proof technique used for
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establishing these collapse results, of which we give an outline here. Let the set F
consist of none, one, or both of the features projection and diversity, let N (F) be
the basic language augmented with the features in F, and let N (F ∪ {+}) be this
language augmented with transitive closure. Let e be an expression in N (F ∪ {+}),
and let G be an unlabeled graph. The proof goes in two steps.

1. Find a suitable expression suffF,e in N (F), only depending on F and e, and not
on G, such that suffF,e(G) �= ∅ implies e(G) �= ∅.

2. Find an expression e′ in N (F), only depending on e, and not on G, such that
suffF,e(G) = ∅ implies e(G) �= ∅ if and only if e′(G) �= ∅.

It then readily follows that, for all unlabeled graphs G, e(G) �= ∅ if and only if
suffF,e(G) ∪ e′(G) �= ∅, a Boolean query expressed in N (F).

To establish the second step, we identify a subgraph G′ of G such that e(G) �= ∅ if
and only if e(G′) �= ∅. This subgraph G′ depends both on G and e, but its number of
nodes is bounded by a number depending only on e, say D. Hence, we can obtain the
desired expression e′ from e by exhaustively replacing subexpressions of the form f +
by

⋃D
i=1 f i.

It is interesting to note that the same proof technique works for all the relation
algebra fragments obtained from adding none, one, or both of projection and
diversity to the basic language. Actually, only the first step of the proof, establishing
a suitable expression suffF,e(G) is language-dependent. One might therefore hope
that this proof technique could also be applicabe to other languages.

Moreover, it turns out that suffF,e(G) does not fully depend on e, but only on |e|,
the number of occurrences of “R” in e. By “R,” we mean the relation symbol in the
basic language that is evaluated as the relation represented by the input graph. Even
stronger, suffF,e(G) is a fixed expression in N (F ∪ { f }), where f stands for R|e|, R
composed with itself |e| times. One can therefore argue that our proof yields a normal
form for an expression in N (F) equivalent to a given expression in N (F ∪ {+}).

The remainder of this paper is organized as follows. In Section 2, we introduce
the basic concepts of this paper, including syntax and semantics of the languages
under consideration. Continuing in this vein, we define in Section 3 trace expressions
as a tool to link expressions in languages with transitive closure to expressions
in the corresponding languages without transitive closure. Then, in Section 4, we
describe some results of earlier work [10, 11] necessary to understand the context
of the main result of the present paper, which is that adding transitive closure to
languages containing no other nonbasic features than projection and diversity yields
no additional power at the level of Boolean queries, when evaluated on unlabeled
graphs. In Section 5, we state this result formally, and present in general terms a two-
step strategy to prove it. In Section 6, we deal with the first step of this proof strategy.
In Section 7, we describe in more detail than in Section 5 the proof strategy for the
much more elaborate second step. The ingredients of this strategy are then discussed
in subsequent sections: expressions with conditionals (Section 8), line patterns and
graph patterns (Section 9), normalizing trace expressions (Section 10) and canonical
subgraphs (Section 11). In Section 12, these ingredients are put to work to show
a partial result for the case where all projection subexpressions are replaced by
conditionals. This partial result is then bootstrapped to the main result in Section 13.
We conclude in Section 14 by summarizing our understanding of the impact of adding
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Fig. 1 Three unlabeled and labeled graphs used in Example 1

transitive closure to relation algebra fragments, which has now been completed, and
discussing some directions for future work.

2 Graphs and languages

In this paper, we are interested in navigating over graphs. For our purposes, a graph
is a relational structure G, consisting of a set of nodes V and a binary relation R ⊆
V × V, the set of edges of G.

In what follows, both V and R may be either finite or infinite. Indeed, while we
have finite graphs in mind from the point of view of the applications, we never rely
on finiteness to prove the results of this paper. Therefore, the results do not only hold
for finite graphs, but also for arbitrary graphs, which may be finite or infinite.

An extension of this model consists of allowing multiple binary relations, by
labeling the edges.1 For comparison, we shall sometimes refer to labeled graphs,
though the emphasis of this paper is on unlabeled graphs.

Example 1 First, consider the unlabeled graph G1 of Fig. 1. Clearly, this graph
represents the relation R(G1) = {(a, b), (b , c), (c, d), (d, e), (e, f ), ( f, a), ( f, b),

( f, c), (d, f )}. Clearly, the labeled graph G2, in which all edges are labeled “R,”
represents the same relation, i.e., R(G2) = R(G1). Finally, consider the labeled
graph G3, in which edges are labeled with “R,” “S,” or “T.” (Notice that there is
both an R- and an S-labeled edge ( f, c).) This graph represents three relations,
namely

R(G3) = {(a, b), (b , c), ( f, a), ( f, b), ( f, c)} ;
S(G3) = {(c, d), (d, f ), ( f, c)} ; and
T(G3) = {(d, e), (e, f )} .

Clearly, every relational structure can be represented as a single graph, by appropri-
ately labeling its edges. In this work, however, multiple-relation relational structures
are only considered for purposes of comparison.

1In this case, the number of relation names is always finite.
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To navigate over graphs, we consider queries at two different levels.

Definition 1

– A path query takes as input a graph G and returns a binary relation e(G) ⊆
adom(G) × adom(G), where adom(G) denotes the active domain of G, which
is the set of all vertices occurring in some edge of G.

– A Boolean query takes as input a graph G and returns true or false.

Example 2 Finding all pairs of nodes in a graph that are connected by a simple path
of length 3 is an example of a path query; finding out whether a graph contains two
nodes connected by a simple path of length 3 is an example of a Boolean query.

The most basic language for navigating over graphs we consider is the algebra N
whose expressions are built recursively from the edge set symbol R, the primitive ∅,
and the primitive id, using composition (e1 ◦ e2) and union (e1 ∪ e2).2

Semantically, each expression e in N represents a path query, inductively defined
as follows:

R(G) = R ;
∅(G) = ∅ ;
id(G) = {(v, v) | v ∈ adom(G)} ;
e1 ◦ e2(G) = {(v, w) | ∃z : (v, z) ∈ e1(G) & (z, w) ∈ e2(G)} ;
e1 ∪ e2(G) = e1(G) ∪ e2(G) .

The basic algebra N can be extended by adding some of the following features:
diversity (di), converse (e−1), intersection (e1 ∩ e2), difference (e1 \ e2), projections
(π1(e) and π2(e)), coprojections (π1(e) and π2(e)), and transitive closure (e+). We
refer to the operators in the basic algebra N as basic features; we refer to the
extensions as nonbasic features. The semantics of the extensions is as follows:

di(G) = {(v, w) | v, w ∈ adom(G) & v �= w} ;
e−1(G) = {(v, w) | (w, v) ∈ e(G)} ;
e1 ∩ e2(G) = e1(G) ∩ e2(G) ;
e1 \ e2(G) = e1(G) \ e2(G) ;
π1(e)(G) = {(v, v) | v ∈ adom(G) & ∃w : (v, w) ∈ e(G)} ;
π2(e)(G) = {(v, v) | v ∈ adom(G) & ∃w : (w, v) ∈ e(G)} ;
π1(e)(G) = {(v, v) | v ∈ adom(G) & ¬∃w : (v, w) ∈ e(G)} ;
π2(e)(G) = {(v, v) | v ∈ adom(G) & ¬∃w : (w, v) ∈ e(G)} ;
e+(G) = ⋃

k≥1 ek(G) .

Here, ek denotes e ◦ · · · ◦ e (k times). For future use, we put e0 := id.
If F is a set of nonbasic features, we denote by N (F) the language obtained by

adding all features in F to N . For example, N (∩) denotes the extension of N

2By abuse of notation, we shall use “R” both as a symbol in the algebra N and as the name of the
corresponding edge relation in G.
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with intersection, and N (∩, π, +) denotes the extension of N with intersection, both
projections,3 and transitive closure.

We refer to the language N (\, di, −1) as the relation algebra. For each set F of
nonbasic features considered above not containing transitive closure, all path queries
expressible in N (F) are also expressible in the relation algebra [17].

Language expressiveness can not only be considered at the level of path queries,
but also at the level of Boolean queries.

Definition 2 Let F be a set of nonbasic features. A path query q is expressible in a
language N (F) if there exists an expression e in N (F) such that, for every graph G,
we have e(G) = q(G). Similarly, a Boolean query q is expressible in N (F) if there
exists an expression e in N (F) such that, for every graph G, we have that e(G) is
nonempty if and only if q(G) is true. In both cases, we say that q is expressed by e.

In this paper, we are mainly interested in Boolean queries. Compared to path
queries, this means that we are not interested in the precise set of pairs returned
by an expression on a given input graph, but rather in whether or not this set is
empty. Hence, if we can establish that adding transitive closure to a language does
not increase its expressive power at the level of path queries, this must necessarily
also be the case at the level of Boolean queries. There is no equally compelling reason
why the converse should be true, however. Therefore, studying expressiveness issues
is considerably more difficult at the level of Boolean queries than at the level of path
queries.

To conclude these preliminaries, we formally define what we mean by a subex-
pression of a given expression.

Definition 3 Let F be a set of nonbasic features, and let e be an expression in N (F).
The set of all subexpressions of e, denoted Sub(e), is defined recursively, as follows:

1. if e is either R, ∅, id, or di, then Sub(e) = {e};
2. if “�” is either composition or a set operation, and if, for some expressions e1 and

e2 in N (F), e = e1 � e2, then Sub(e) = Sub(e1) ∪ Sub(e2) ∪ {e}; and
3. if “θ” is either a projection, a coprojection, converse, or transitive closure, and if,

for some expression f in N (F), e = θ( f ), then Sub(e) = Sub( f ) ∪ {e}.

An expression that is either “R,” “∅,” “id,” or “di” is called atomic. For an
expression e in the relation algebra with or without transitive closure, we denote
by |e| the number of occurrences of “R” in e.

3 Trace expressions

If we evaluate an expression e in N (π, di, +), then, to validate that, for some nodes
v and w in a graph G, (v, w) ∈ e(G), we must in general make some choices to arrive
at that result. In particular, when evaluating a subexpression f1 ∪ f2, we must decide

3We do not consider extensions of N in which only one of the two projections, respectively one of
the two coprojections, is present.
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whether to evaluate f1 or f2, Similarly, if we encounter a subexpression f +, we must
decide how many times we are going to iterate over f . To formalize this, we introduce
trace expressions.

Definition 4 Let e be an expression in N (π, di, +). Then, T (e), the set of trace
expressions of e, is defined recursively, as follows:

1. if e is an atomic expression, then T (e) = {e};
2. for i = 1, 2, T (πi(e)) = {πi( f ) | f ∈ T (e)};
3. T (e1 ∪ e2) = T (e1) ∪ T (e2);
4. T (e1 ◦ e2) = { f1 ◦ f2 | f1 ∈ T (e1) & f2 ∈ T (e2)}; and
5. T (e+) = ⋃

k≥1{ f1 ◦ · · · ◦ fk | ∀i = 1, . . . , k : fi ∈ T (e)}.

Notice that, indeed, trace expressions do not contain union and transitive closure.
The intuition expressed in the opening paragraph of this section is now captured by
Proposition 1, which follows from a straightforward structural induction argument.

Proposition 1 Let e be an expression in N (π, di, +). Let G be a graph and v and w
nodes of G. Then, (v, w) ∈ e(G) if and only if there exists f ∈ T (e) such that (v, w) ∈
f (G).

Trace expressions represent different ways to evaluate an expression containing
union and/or transitive closure, hence the name “trace.” Unfortunately, trace expres-
sions do not always carry sufficient information to match them unambiguously with
particular ways to evaluate the original expression. To see this, consider the following
example. Let R+ ∪ (R ◦ R)+ be an expression in N (+). Clearly, R ◦ R is one of its
trace expressions. However, it can result from two different ways of evaluating the
orginal expression:

1. one can iterate twice over R+, the left-hand term of the union in R+ ∪ (R ◦ R)+;
or

2. one can iterate once over (R ◦ R)+, the right-hand term of the union in R+ ∪
(R ◦ R)+.

Since we will need to match traces unambigously with particular ways of evaluating
an expression, we wish to point out that the concept of trace can be “enriched” to
allow an unambigous matching.

Formally, this can be achieved by marking the original expression. That is, we tag
each atom in that expression with its position in that expression. For example, R1

+ ∪
(R2 ◦ R3)

+ is a marked version of R+ ∪ (R ◦ R)+. We can then define marked traces
in much the same way as above, starting from the marked version of the original
expression, instead of the original expression itself. The tags in a marked trace then
reveal in an unambiguous manner which particular way of evaluating the original
expression led to that trace.

For example, there are two marked traces of R1
+ ∪ (R2 ◦ R3)

+ corresponding to
the trace R ◦ R of R+ ∪ (R ◦ R)+: R1 ◦ R1 and R2 ◦ R3. The former corresponds with
iterating twice over R+, and the latter with iterating once over (R ◦ R)+.

In this work, we shall not introduce marked traces formally, to avoid overloading
the notation. Nevertheless, we shall always assume implicitly for each trace we
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consider that a marking is available that matches the symbols in the trace in an
unambiguous manner with symbols in the original expression.

4 Describing the context

In this section, we describe some results [10, 11] necessary to understand the context
of the results of the present paper.

First, we observe that there exist the following interdependencies between the
features introduced in Section 2:

π1(e) = (e ◦ e−1) ∩ id = (e ◦ (id ∪ di)) ∩ id = π1(π1(e));
π2(e) = (e−1 ◦ e) ∩ id = ((id ∪ di) ◦ e) ∩ id = π2(π2(e));
π1(e) = id \ π1(e);
π2(e) = id \ π2(e);

e1 ∩ e2 = e1 \ (e1 \ e2).

For a set of nonbasic features F not containing transitive closure, let F be the
set obtained by augmenting F with all nonbasic features that can be expressed in
N (F) through a repeated application of the above equalities. For example, {\, −1} =
{\, −1,∩, π, π}.

The present authors have been able to show the following result.

Proposition 2 [11] Let F1 and F2 be sets of nonbasic features not containing transitive
closure. The language N (F1) is at most as expressive as the language N (F2) at the
level of path queries if and only if F1 ⊆ F2.

For Boolean queries, the situation is slightly more complicated, because of the
following result.

Proposition 3 [11] Let F be a set of nonbasic features not containing transitive closure.
If F does not contain intersection, then N (F ∪ {−1}) is at most as expressive as
N (F ∪ {π}) at the level of Boolean queries.

So, in the presence of projection and in the absence of intersection, converse does
not add expressive power at the Boolean level. To accommodate this additional
result, we define the following notion, given a set of nonbasic features F not
containing transitive closure:

F̃ =
{

F ∪ {−1} if π ∈ F and ∩ �∈ F;
F otherwise.

For example, ˜{π, di} = {−1, π, π, di}.
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The present authors were able to establish the following analogue of Proposition 2
for Boolean queries.

Proposition 4 [11] Let F1 and F2 be sets of nonbasic features not containing transitive
closure. The language N (F1) is at most as expressive as the language N (F2) at the
level of Boolean queries if and only if F1 ⊆ F̃2.

In particular, Proposition 4 establishes which relation algebra fragments not
containing transitive closure are equivalent in expressive power at the level of
Boolean queries.

What happens if we add transitive closure to these fragments?
At the level of path queries, the answer is straightforward, as it is well-known that

the expression R+ represents a query not expressible in FO (see, e.g., [2]). Hence,
adding transitive closure always strictly increases the expressive power at the level of
path queries. At the level of Boolean queries, the situation is more subtle. Indeed,
the argument above is no longer applicable, as R+ �= ∅ if and only if R �= ∅. Using a
straightforward Ehrenfeucht-Fraïssé argument (see, e.g., [2]), it is nevertheless still
possible to show that the Boolean query represented by the expression R ◦ S+ ◦ R
is not expressible in FO. However, this expression contains two relation names.
Hence, also at the level of Boolean queries, adding transitive closure always strictly
increases the expressive power, but only if labeled input graphs with at least two
relation names are allowed. This begs the question whether this result still holds for
unlabeled input graphs. Using ad-hoc arguments, the present authors were able to
establish the following.

Proposition 5 [10, 11] Let F be a set of nonbasic features such that F contains at
least one of intersection, converse, or coprojection. Then, adding transitive closure to
N (F) strictly increases the expressive power at the level of Boolean queries, even if
only unlabeled input graphs are considered.

Taking into account Proposition 4, four relation algebra fragments are not covered
by Proposition 5: N , N (π), N (di), and N (π, di). It is the purpose of the present
paper to prove that adding transitive closure to these fragments does not increase
their expressive power at the level of Boolean queries if only unlabeled graphs are
considered.

From now on, we assume a graph is unlabeled unless stated otherwise.

5 Main result and general proof strategy

The rest of the paper is devoted to proving that, at the level of Boolean queries,
N (F ∪ {+}) collapses to N (F) for all sets of nonbasic features F for which F ⊆
{π, di}. We first state this result formally.

Theorem 1 Let F ⊆ {π, di} be a set of nonbasic features. Then, for each expression
e in N (F ∪ {+}), there exists an expression ẽ in N (F) such that, for each unlabeled
graph G, ẽ(G) �= ∅ if and only if e(G) �= ∅.

176



The impact of transitive closure on unlabeled graphs

We next give an outline of our strategy for proving Theorem 1. We start with an
introductory example.

Example 3 Consider the expression e := π1(R3)◦R+◦di◦π2(R) ◦ R2 in N (π, di, +).
Let G be a graph. For e(G) to be nonempty, the subexpressions to the right of “di”
must return nonempty. Hence, there must exist a chain w0 → w1 → w2 → w3 in G.
Unless, for each such chain, w1 = w2 = w3, it is readily seen that this condition is
also sufficient for e(G) �= ∅. In the other case, there must also exist an edge v0 → v1

with a self-loop in v1 for which v1 �= w1 in order for e(G) to be nonempty. It can now
be readily verified that, in both cases, e′(G) �= ∅, with e′ := π1(R3) ◦ (R ∪ R2) ◦ di ◦
π2(R) ◦ R2 in N (π, di). As always e′(G) ⊆ e(G), the converse implication also holds,
so e′ ∈ N (π, di) is equivalent to e ∈ N (π, di, +) at the level of Boolean queries.

The argument used to show that transitive closure can be eliminated from the
expression in Example 3 is very ad-hoc. Moreover, the considered expression is very
simple. We therefore need a general technique to show that, for F ⊆ {π, di}, N (F ∪
{+}) collapses to N (F) at the level of Boolean queries. In this section, we outline this
technique, and, in subsequent sections, we work it out in further detail. It consists of
two steps. Given an expression e in N (F ∪ {+}),
1. find an expression suffF,e in N (F) such that, for every graph G, suffF,e(G) �= ∅

implies e(G) �= ∅; and
2. find an expression e′ in N (F) that is equivalent to e at the level of Boolean

queries on all graphs G for which suffF,e(G) = ∅.

It then follows immediately that, on all graphs, e is equivalent to ẽ := suffF,e ∪ e′ at
the level of Boolean queries, i.e., for every graph G, ẽ(G) �= ∅ if and only if e(G) �= ∅.
Intuitively, suffF,e(G) �= ∅ is a sufficient condition for e(G) to be nonempty. It
therefore suffices to show the collapse on graphs that do not satisfy this condition,
i.e., for which suffF,e(G) = ∅. If suffF,e is well-chosen, then the latter condition will
turn out to be sufficiently restrictive for our purposes.

6 The first step

The first step of the proof strategy described in Section 5 is, given F ⊆ {π, di} and
an expression e in N (F ∪ {+}), finding an expression suffF,e in N (F) for which
suffF,e(G) �= ∅ implies e(G) �= ∅ for every input graph G. This first step is secured
by a series of lemmas, summarized in Theorem 2.

We start with the following straightforward observations.

Lemma 1 Let G1 and G2 be graphs, and let h be a homomorphism from G1 to G2.

1. Let e be an expression in N (π, +). Then (v, w) ∈ e(G1) implies (h(v), h(w)) ∈
e(G2).

2. Let e be an expression in N (π, di, +). If h is injective, then (v, w) ∈ e(G1) implies
(h(v), h(w)) ∈ e(G2).

Arguably, the simplest graphs we can consider in this contexts are chains. A chain
of length m, denoted Cm, is a graph consisting of mutually distinct nodes v0, . . . , vm
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and edges between subsequent nodes. Lemma 1 can then help us to link the behavior
of an expression on such a chain to the behavior of that expression on the given input
graph.

Lemma 2 Let e be an expression in N (π, +). Then, for m ≥ |e|, e(Cm) �= ∅.

Proof The proof is a structural induction argument. The only non-straightforward
case to consider is the induction step for composition. Thus, suppose that e = e1 ◦ e2,
and that e1 and e2 satisfy Lemma 2. In particular, e1(C|e1|) �= ∅ and e2(C|e2|) �= ∅.
Let the chain C|e1| consist of the nodes v0, . . . , v|e1| and C|e2| consist of the nodes
w0, . . . , w|e2|. Let (vi, v j) ∈ e1(C|e1|) and (wk, wl) ∈ e2(C|e2|). Finally, for m ≥ |e| =
|e1| + |e2|, let Cm consist of the nodes z0, . . . , zm. We now distinguish two cases.

1. j ≥ k. Consider the homomorphism from C|e1| to Cm mapping v0 to z0, and hence
vi to zi and v j to z j. By Lemma 1, (1), (zi, z j) ∈ e1(Cm). Since j ≥ k, there exists
a homomorphism from C|e2| to Cm mapping wk to z j, and hence wl to z j+l−k. By
Lemma 1, (1), (z j, z j+l−k) ∈ e2(Cm). Hence, (zi, z j+l−k) ∈ e(Cm).

2. j < k. Consider the homomorphism from C|e2| to Cm mapping w|e2| to zm, and
hence wk to zk+m−|e2| and wl to zl+m−|e2|. By Lemma 1, (1), (zk+m−|e2|, zl+m−|e2|) ∈
e2(Cm). Since j < k, there exists a homomorphism from C|e1| to Cm map-
ping v j to zk+m−|e2|, and hence vi to zk+i− j+m−|e2|. By Lemma 1, (1),
(zk+i− j+m−|e2|, zk+m−|e2|) ∈ e1(Cm). Hence, (zk+i− j+m−|e2|, zl+m−|e2|) ∈ e(Cm).

In both cases, we find that e(Cm) �= ∅. ��

Using the above lemmas, we can easily find an expression suffF,e if F ⊆ {π}.

Lemma 3 Let e be an expression in N (π, +), and let G be a graph. If R|e|(G) �= ∅,
then e(G) �= ∅.

Proof The condition R|e|(G) �= ∅ is equivalent to the existence of a homomorphism
from C|e| to G. By Lemma 2, e(C|e|) �= ∅. Hence, by Lemma 1, (1), e(G) �= ∅. ��

We now consider the case where F = {di}.

Lemma 4 Let e be an expression in N (di, +), and let G be a graph. If R|e| ◦ di ◦
R|e|(G) �= ∅, then e(G) �= ∅.

Proof We first consider an expression f in N (di) of the form f := Rm1 ◦ di ◦ Rm2 ◦
di ◦ · · · ◦ di ◦ Rmn , n ≥ 1, 1 ≤ m1, . . . , mn ≤ |e|, and prove that it returns a nonempty
result on graphs satisfying R|e| ◦ di ◦ R|e|(G) �= ∅.4 Thereto, we distinguish two cases.

1. There exist nodes v1, w1, v2, and w2 in G such that (v1, w1) ∈ R|e|(G), (v2, w2) ∈
R|e|(G), and v1 �= v2. For i = 1, . . . , n, let fi = Rm1 ◦ di ◦ · · · ◦ di ◦ Rmi . We prove

4Notice that this statement is voidly true if |e| = 0.
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by induction that there exist nodes z1, . . . , zn in G such that (v1, zi) ∈ fi(G). For
the base case, i = 1, this follows from m1 ≤ |e|. Assume that we have already
established that, for some node zi of G, (v1, zi) ∈ fi(G). Since v1 �= v2, zi �= v1

or zi �= v2. Without loss of generality, assume the latter. Since (v2, w2) ∈ R|e|(G)

and mi+1 ≤ |e|, it follows that there exists a node zi+1 in G such that (v2, zi+1) ∈
Rmi+1(G). Hence, (v1, zi+1) ∈ fi+1(G), as was to be shown. We find in particular
that f (G) = fn(G) �= ∅.

2. There is only one node v in G such that, for some node w in G, (v, w) ∈ R|e|(G).
From R|e| ◦ di ◦ R|e|(G) �= ∅, it follows that, for some node w in G with (v, w) ∈
R|e|(G), v �= w.
We distinguish two subcases.

(a) (v, v) ∈ R. Notice that there must also exist a node z in G with (v, z) ∈ R
and v �= z. Otherwise, it would be impossible that, for some node w in
G with (v, w) ∈ R|e|(G), v �= w. From (v, v) ∈ R and (v, z) ∈ R, it follows
that, for all m ≥ 1, (v, z) ∈ Rm(G). Since v �= z, we may conclude that also
(v, z) ∈ f (G). In particular, f (G) �= ∅.

(b) (v, v) /∈ R. By assumption, there exist nodes v = v0, v1, . . . , v|e| = w, such
that, for m = 0, . . . , |e| − 1, (vm, vm+1) ∈ R. From the assumption in this
subcase, it immediately follows that v = v0 �= v1. Next, consider node
vm, 2 ≤ m ≤ |e|. If v = v0 = vm, then there exists k, 0 ≤ k ≤ m, such that
(v1, vk) ∈ R|e|(G), contradicting the assumption that v = v0 is the unique
node for which there exists a node w such that (v, w) ∈ R|e|(G). Hence, for
m = 1, . . . , |e|, (v, vm) ∈ Rm(G), and v �= vm. Following a similar reasoning
as in Subcase 2a, we find that (v, vmn) ∈ f (G). In particular, f (G) �= ∅.

Notice that it also follows from our reasoning that expressions of the form

di ◦ Rm1 ◦ di ◦ Rm2 ◦ di ◦ · · · ◦ di ◦ Rmn ;
Rm1 ◦ di ◦ Rm2 ◦ di ◦ · · · ◦ di ◦ Rmn ◦ di ; and

di ◦ Rm1 ◦ di ◦ Rm2 ◦ di ◦ · · · ◦ di ◦ Rmn ◦ di ,

n ≥ 1, 1 ≤ m1, . . . , mn ≤ |e|, return a nonempty result on graphs satisfying R|e| ◦ di ◦
R|e|(G) �= ∅, since this condition implies that G contains at least two nodes.

Now, consider a trace expression f ∈ T (e) for which | f | ≤ |e|. (All trace expres-
sions obtained by iterating only once over all transitive closure subexpressions satisfy
this condition.) First, superfluous occurrences of “id” can be eliminated from f .
Next, remember that a graph G satisfying R|e| ◦ di ◦ R|e|(G) �= ∅ contains at least two
nodes. If G contains exactly two nodes, then dik is equivalent to id if k is even and to
di if k is odd. Otherwise, dik is equivalent to id ∪ di. It follows that, if |e| = 0, then, on
G, f is equivalent to either id, di, or id ∪ di. In each case f (G) �= ∅. If |e| > 0, then,
on G, f is equivalent to a union of expressions of the types considered above. Hence,
also in this case, we may conclude that f (G) �= ∅.

From Proposition 1, it now immediately follows that, in all cases, e(G) �= ∅. ��

Finally, we deal with the case where F = {π, di}.

Lemma 5 Let e be an expression in N (π, di, +), and let G be a graph. If π1(R|e|) ◦
π2(R|e|) ◦ di ◦ π1(R|e|) ◦ π2(R|e|) �= ∅, then e(G) �= ∅.
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Proof We first observe that the condition π1(R|e|) ◦ π2(R|e|) ◦ di ◦ π1(R|e|) ◦
π2(R|e|)(G) �= ∅ is equivalent to the existence of two sequences of not necessarily
all different nodes v−|e|, . . . , v−1, v0, v1, . . . , v|e| and w−|e|, . . . , w−1, w0, w1, . . . , w|e|
in G such that, (1) for i = −|e|, . . . , |e| − 1, (vi, vi+1) ∈ R and (wi, wi+1) ∈ R, and
(2) v0 �= w0.

Let H be the subgraph of G consisting of the nodes and edges singled out above.
Let f be a union-free expression in N (π, di) with | f | ≤ |e|. We show by a nested
inductive argument that,

1. for all i = 0, . . . , |e| − | f |, there exists j with 0 ≤ j ≤ i + | f | such that (vi, v j) ∈
f (H) or (vi, w j) ∈ f (H);

2. for all i = −|e|, . . . , 0, there exists j with i ≤ j ≤ | f | such that (vi, v j) ∈ f (H) or
(vi, w j) ∈ f (H);

3. for all i = 0, . . . , |e| − | f |, there exists j with 0 ≤ j ≤ i + | f | such that (wi, v j) ∈
f (H) or (wi, w j) ∈ f (H);

4. for all i = −|e|, . . . , 0, there exists j with i ≤ j ≤ | f | such that (wi, v j) ∈ f (H) or
(wi, w j) ∈ f (H);

5. for all i = −|e| + | f |, . . . , 0, there exists j with i − | f | ≤ j ≤ 0 such that (v j, vi) ∈
f (H) or (w j, vi) ∈ f (H);

6. for all i = 0, . . . , |e|, there exists j with −| f | ≤ j ≤ i such that (v j, vi) ∈ f (H) or
(w j, vi) ∈ f (H);

7. for all i = −|e| + | f |, . . . , 0, there exists j with i − | f | ≤ j ≤ 0 such that (v j, wi) ∈
f (H) or (w j, wi) ∈ f (H); and

8. for all i = 0, . . . , |e|, there exists j with −| f | ≤ j ≤ i such that (v j, wi) ∈ f (H) or
(w j, wi) ∈ f (H).

We first show the first statement for the case that f is projection-free, i.e., that f
is in N (di). First, observe that, always, (vi, vi) ∈ id(H). We can view each union-
free expression in N (di) as a composition of “id” with none, one, or more factors
“R” or “di.” Thus, assume that f is a union-free expression in N (di) with | f | ≤ |e|,
and let f = g ◦ R, where g satisfies the first statement above. Let 0 ≤ i ≤ |e| −
| f |. Since | f | = |g| + 1, 0 ≤ i ≤ |e| − |g|. By the first statement of the induction
hypothesis, there exists j with 0 ≤ j ≤ i + |g| such that (vi, v j) ∈ f (H) or (vi, w j) ∈
f (H). Observe that j ≤ i + |g| ≤ |e| − | f | + |g| = |e| − 1. Hence, (v j, v j+1) ∈ R and
(w j, w j+1) ∈ R, as a consequence of which (vi, v j+1) ∈ f (H) or (vi, w j+1) ∈ f (H).
Finally, notice that j + 1 ≤ i + |g| + 1 = i + | f |. Alternatively, assume that f = g ◦
di, where g satisfies the first statement above. Let 0 ≤ i ≤ |e| − | f |. Since | f | = |g|,
0 ≤ i ≤ |e| − |g|. By the induction hypothesis, there exists j with 0 ≤ j ≤ i + |g| such
that (vi, v j) ∈ f (H) or (vi, w j) ∈ f (H). Without loss of generality, assume the latter.
Since v0 �= w0, w j �= v0 or w j �= w0. Again without loss of generality, assume the
latter. Then (vi, w0) ∈ f (H). We have thus shown that the first statement holds for
all union-free expressions f in N (di) with | f | ≤ |e|. The other statements for this
case are shown analogously.

We now consider the general case, and use the case above as the basis for an
induction on the number of projection subexpressions in the expression under con-
sideration. We focus again of the first statement. Thus, assume that f is in N (π, di)
with | f | ≤ |e|, and that 0 ≤ i ≤ |e| − | f |. If f is not projection-free, we can write
f = f1 ◦ π1( f2) ◦ f3 or f = f1 ◦ π2( f2) ◦ f3, with f1 projection-free, and f2 and f3

containing fewer projection subexpressions than f . By the first statement of the basis
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Table 1 Expressions suffF,e in
N (F) for which suffF,e(G) �= ∅
implies e(G) �= ∅, F ⊆ {π, di}

F suffF,e

∅ R|e|
{π} R|e|
{di} R|e| ◦ di ◦ R|e|
{π, di} π1(R|e|) ◦ π2(R|e|) ◦ di ◦ π1(R|e|) ◦ π2(R|e|)

of this induction, there exists j, 0 ≤ j ≤ i + | f1|, such that (vi, v j) ∈ f1(H) or (vi, w j) ∈
f1(H). Without loss of generality, assume the latter. Clearly, j ≤ |e| − (| f2| + | f3|),
in particular, j ≤ |e| − | f2| and j ≤ |e| − | f3|. By the latter condition and the third
statement of the induction hypothesis, there exists k, 0 ≤ k ≤ j + | f3| ≤ i + | f1| =
| f3| ≤ i + | f | such that (w j, vk) ∈ f3(H) or (w j, wk) ∈ f3(H). We now distinguish the
two cases.

1. f = f1 ◦ π1( f2) ◦ f3. As above, we can derive from the the third statement of the
induction hypothesis that there exists l, 0 ≤ l ≤ j + | f2| such that (w j, vl) ∈ f2(H)

or (w j, wl) ∈ f2(H). In particular, (w j, w j) ∈ π1( f2)(H). Combining everything
together, we find that (vi, vk) ∈ f (H) or (vi, wk) ∈ f (H), with k in the desired
range.

2. f = f1 ◦ π2( f2) ◦ f3. By the last statement of the induction hypothesis, it follows
that there exists l, −| f2| ≤ l ≤ j, such that (vl, w j) ∈ f2(H) or (wl, w j) ∈ f2(H).
In particular, (w j, w j) ∈ π2( f2)(H). Combining everything together, we find that,
also in this case, (vi, vk) ∈ f (H) or (vi, wk) ∈ f (H), with k in the desired range.

The induction step for the other seven statements is analogous.
We have thus shown, for every union-free expression f in N (π, di) with | f | ≤ |e|,

that f (H) �= ∅, and, hence, by Lemma 1, (2), that f (G) �= ∅. Since all trace expres-
sions f ∈ T (e) obtained by iterating only once over transitive closure subexpressions
satisfy | f | ≤ |e|, it follows from Proposition 1 that also e(G) �= ∅. ��

Theorem 2 below summarizes Lemmas 3, 4, and 5.

Theorem 2 Let F ⊆ {π, di} be a set of nonbasic features. Let e be an expression in
N (F ∪ {+}). Let suffF,e in N (F) be as tabulated in Table 1. Then, for every graph G,
suffF,e(G) �= ∅ implies e(G) �= ∅.

7 Proof strategy for the second step

In Section 6, we established, for F ⊆ {π, di} and e an expression in N (F ∪ {+}), the
existence of an expression suffF,e in N (F) such that, for every graph G, suffF,e(G) �=
∅ implies e(G) �= ∅.

The second step in our general proof strategy requires finding an expression e′
in N (F) such that, for every graph G satisfying suffF,e(G) = ∅, e′(G) �= ∅ if and
only if e(G) �= ∅. (As explained before, we may then conclude that e is equivalent
to suffF,e(G) ∪ e′ at the level of Boolean queries.)

For that purpose, we need to know some information on how a graph G satisfying
suffF,e(G) = ∅ looks like.

For our purpose, we extend the notion of directed acyclic graph (DAG).
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Definition 5 An extended directed acyclic graph (EDAG) is a (not necessarily con-
nected) DAG to which self-loops may be added provided each path in the DAG
contains at most one node with a self-loop. The DAG obtained from an EDAG by
removing all self-loops (but not the nodes in which these self-loops occur) is called
the underlying DAG. The depth of an EDAG is the depth of the underlying DAG,
i.e., the maximal length of a path in that DAG.

We now have the following.

Lemma 6 Let m be a nonzero natural number, and let G be a graph such that π1(Rm) ◦
π2(Rm) ◦ di ◦ π1(Rm) ◦ π2(Rm)(G) = ∅. Then G is an EDAG of depth at most 2m.

Proof If π1(Rm) ◦ π2(Rm) ◦ di ◦ π1(Rm) ◦ π2(Rm)(G) = ∅, then it is the case that,
for any two sequences of nodes v−m, . . . , v−1, v0, v1, . . . , vm and w−m, . . . , w−1,

w0, w1, . . . , wm in G such that, for i = −m, . . . , m − 1, (vi, vi+1) ∈ R and (wi, wi+1) ∈
R, we have that v0 = w0 (cf. the proof of Lemma 5). Clearly, this is not the case
if G contains either one loop of length at least two; or two self-loops; or a non-
selfintersecting path of length at least 2m + 1. Hence, G is an EDAG of depth at
most 2m. ��

Notice that G being an EDAG of depth at most 2m is not a sufficient condition for
the expression in Lemma 6 to evaluate to the empty set. For instance, an EDAG may
contain more than one self-loop in total (at most one on each path in the underlying
DAG). Also, a DAG (which is a special case of an EDAG) of depth 2m may contain
two paths of length 2m of which the middle nodes do not coincide. Hence, G being
an EDAG of depth at most 2m is only a necessary condition for π1(Rm) ◦ π2(Rm) ◦
di ◦ π1(Rm) ◦ π2(Rm)(G) = ∅. For our purposes, however, this is all we need.

We are now ready to bootstrap Lemma 6, as follows.

Proposition 6 Let F ⊆ {π, di} be a set of nonbasic features, and let e be an expression
in N (F ∪ {+}). Let G be a graph such that suffF,e(G) = ∅. Then G is an EDAG of
depth at most 2|e|.

Proof Obviously, R|e|(G) = ∅ implies that π1(R|e|) ◦ π2(R|e|) ◦ di ◦ π1(R|e|) ◦ π2(R|e|)
(G) = ∅. Furthermore, R|e|(G) ◦ di ◦ R|e|(G) = ∅ implies that π2(R|e|) ◦ di ◦
π1(R|e|)(G) = ∅, which in turn also implies that π1(R|e|) ◦ π2(R|e|) ◦ di ◦ π1(R|e|) ◦
π2(R|e|)(G) = ∅. Proposition 6 now follows from Lemma 6. ��

Now assume that we are given an expression e in N (π, di, +) and an EDAG G
of depth at most 2|e|. The remainder of this paper is concerned with proving that
there exists a nonzero natural number D depending only on e such that e(G) = ∅
if and only if e′(G) = ∅, where e′ is obtained from e by exhaustively replacing
subexpressions of the form f + by

⋃D
i=1 f i.

Notice that this expression is in N (F), F ⊆ {π, di}, whenever e is in N (F ∪ {+}).
Hence, there is no need to treat the cases F = ∅, F = {π} and F = {di} separately.

To achieve our goal, we intend to show (Proposition 15) that there exists a nonzero
natural number D such that, for every EDAG G of depth at most 2|e|, and for every
node v of G, there exists a subgraph Gv of G containing v which has at most D nodes
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and satisfies the following property: there exists a node w for which (v, w) ∈ e(G) if
and only if there exists a node w′ in Gv for which (v, w′) ∈ e(Gv). To see that this
property is sufficient for our purposes, assume first that e(G) = ∅. Then e′(G) = ∅,
since, by construction, e′(G) ⊆ e(G). Therefore, assume next that e(G) �= ∅. Then,
for some nodes v and w of G, (v, w) ∈ e(G). Hence, there exists a node w′ in Gv such
that (v, w′) ∈ e(Gv). Since Gv has at most D nodes, e(Gv) = e′(Gv). It follows that
e′(Gv) �= ∅. By Lemma 1, (2), e′(Gv) ⊆ e′(G), and, hence, we also have that e′(G) �= ∅.

In the remaining sections, we shall establish that such subgraphs Gv exist.

8 Expressions with conditionals

In the previous section, we have set ourselves the goal of finding a nonzero natural
number D, only depending on the given expression e in N (π, di, +), such that, for
every EDAG G of depth at most 2|e|, and for every node v of G, there exists a
subgraph Gv of G containing v which has at most D nodes and satisfies the following
property: there exists a node w for which (v, w) ∈ e(G) if and only if there exists a
node w′ in Gv for which (v, w′) ∈ e(Gv).

To simplify our task, we shall first of all take advantage of Proposition 1, and
work with traces of the original expression e rather than e itself. In this we way, we
can work with union-free expressions not containing transitive closure.

These expressions, however, can still contain projection subexpressions, which
makes them still too complicated for the inductive arguments we envisage to prove
the results that will lead to our goal. Therefore, we shall “abbreviate” the projection
subexpressions at the outermost level in the given expression by symbols which
we consider as additional, ad-hoc, features of the language. In this way, these
subexpressions become “black boxes” of which we can ignore the precise syntax and,
to some extent, also the semantics.

More formally, we introduce conditionals as additional, nonbasic atomic features.
At the syntactic level, a conditional is an expression denoted by some symbol, say c.
The semantics of c is given by a mapping (often left implicit) that associates to each
directed graph G a set c(G) of pairs of identical elements of G. Hence, c(G) ⊆ id(G).
This also explains the name: (v, v) ∈ c(G) means that node v “satisfies” c in G. In this
paper, we shall use conditionals to abbreviate projection subexpressions. (Hence,
the mapping defining the semantics of such a conditional is described by a projection
subexpression.)

Notice that the notions of subexpression (Definition 3) and trace expression
(Definition 4) can be extended naturally to languages N (F) where F is a set of
nonbasic features including conditionals. It suffices to treat the conditionals as in
Case 1 of the respective definitions.

Example 4 Consider the expression (R ◦ π1((R3 ◦ di ◦ π2(R2) ◦ R)+))+ ◦ R2. If we
associate a conditional c1 to the projection subexpression π1((R3 ◦ di ◦ π2(R2) ◦
R)+), the expression can be rewritten as (R ◦ c1)

+ ◦ R2, i.e., the projection has for-
mally been eliminated. While the original expression is in N (π, di, +), the resulting
expression is in N (c1, di, +). Hence, every trace of (R ◦ c1)

+ ◦ R2 is a union-free
expression in N (c1, di), i.e., an expression which is also projection-free and does not
contain transitive closure.
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Of course, at some point the projection subexpressions will have to be reintro-
duced to bootstrap the results for projection-free expressions with conditionals to
the desired result about the original expression. We explain here in very general
terms how this can be done. Therefore, notice that, if c is a conditional the semantics
of which is described by a projection subexpression of the form π1( f ) or π2( f ) at
the outermost level of the original expression e, then the maximal nesting depth of
projections in f is at least one less than the maximal nesting depth of projections
in e. This observation is at the core of an inductive argument that will allow the
reintroduction of projection to obtain the targeted results.

Example 5 Consider again the expression (R ◦ π1((R3 ◦ di ◦ π2(R2) ◦ R)+))+ ◦ R2.
Notice that the maximal nesting depth of projection is 2 in this expression. In
Example 4, we have associated to this expression in N (π, di, +) the expression
(R ◦ c1)

+ ◦ R2 in N (c1, di, +), where c1 is a conditional the semantics of which is
described by π1((R3 ◦ di ◦ π2(R2) ◦ R)+). The operand of this projection, (R3 ◦ di ◦
π2(R2) ◦ R)+, is still an expression in N (π, di, +), but the maximal nesting depth of
projection in this expression is 1 instead of 2. In this way, we can build an inductive
argument based on the maximal nesting depth of projection.

Alternatively, if we look at this process from an iterative point of view, we
can replace in a second iteration the projection subexpression π2(R2) in (R3 ◦
di ◦ π2(R2) ◦ R)+ by a conditional c2, yielding the expression (R3 ◦ di ◦ c2 ◦ R)+ in
N (c2, di, +). The operand R2 of the projection subexpression π2(R) describing the
semantics of c2, finally, is projection-free.

So, for Sections 9–12, we introduce a finite set of conditionals � = {c1, . . . , cp}, and
consider the language N (�, di, +), as well as some of its sublanguages. In Section 13,
we will link the conditionals in � to the projection subexpressions in the expression
under consideration to obtain the results that yield the goal set out in the beginning
of this Section.

9 Line patterns and graph patterns

Let � = {c1, . . . , cp} be a finite set of conditionals. A useful property of union-free
expressions in N (�, di) is that the presence of a particular pair of nodes of a graph in
the output of the expression applied to the graph can be rephrased as the existence
of a particular homomorphism from a chain-like directed graph, representing the
expression, into the graph.

More concretely, let f be a union-free expression in N (�, di). We shall associate a
line pattern L( f ) with f . This line pattern is a chain-like directed graph in which each
edge is labeled with either “R” or “di” and each node is labeled by a (possibly empty)
set of conditionals. In addition, each line pattern has one source node, labeled s, and
one target node, labeled t, which may coincide. The precise, inductive, definition is
given in Fig. 2.

From a straightforward inductive argument, we can derive the following result.

Proposition 7 Let � = {c1, . . . , cp} be a f inite set of conditionals and let f be a union-
free expression in N (�, di), and let G be a graph. There exist nodes v and w in G such
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Fig. 2 Definition of the line
pattern L( f ) of a union-free
expression in N (�, di). For
the atomic expressions, we
only show the node label
explicitly if it is a nonempty set
of conditionals. For
composition, we only show the
node label for the nodes at
which the line patterns of the
subexpressions are joined, as
the labels of the other nodes
remain unchanged

L( f2)

L(id) =

L(R) =

L(di) =

if L( f1) =

and L( f2) =

then L( f1 f2) =

L(ci) =

t

ts

t

C2

C1 C2

s, t

{ci}

R

s t

di

s, t

s

s

s

t

C1L( f1)

L( f2)

L( f1)

that (v, w) ∈ f (G) if and only if there exists a homomorphism h from L( f ) to G such
that h(s) = v and h(t) = w, with s and t the source and target nodes of L( f ).

Line patterns are special cases of graph patterns. A graph pattern is a directed
graph in which each edge is labeled with either “R” or “di” and each node is labeled
by a (possibly empty) set of conditionals. At least one node is marked as source, and
at least one node is marked as target.

Let P be a graph pattern, and let G be a directed graph. A mapping h from the
nodes of P to the nodes of G is called a homomorphism from P to G if

1. for each node v of P, all the conditionals by which v is labeled are satisfied by
h(v) in G;

2. for each edge (v, w) of P labeled by “R,” (h(v), h(w)) is an edge of G; and
3. for each edge (v, w) of P labeled by “di,” h(v) �= h(w).

Fig. 3 Example of a graph
pattern that is not a line
pattern. In this graph pattern,
L(g) represents the line
pattern of some expression g di

L(g) t3

di

L(g)

s3 t4

s2

di

L(g)

s1

L(g)

t1

t2
di
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An example of a graph pattern that is not a line pattern can be seen in Fig. 3.
Notice that we use boldface characters for the nodes of line and graph patterns to

distinguish them clearly from the nodes of the input graph.
General graph patterns will be put to use in Section 11 to construct, given an

expression e in N (�, di, +), a natural number m, an EDAG G of depth at most m,
and a node v of G, a sequence of subgraphs of G. The number of nodes of these
subgraphs can be bounded by natural numbers depending only on p, m, and e. One
of these subgraphs will turn out to be the subgraph Gv mentioned at the end of
Section 7, for appropriate choices of the conditionals and their semantics, and for
m = 2|e|.

10 Normalizing trace expressions

In Section 9, we associated line patterns with union-free expression in N (�, di), with
� = {c1, . . . , cp} a set of conditionals.

Trivially, each union-free expression in N (�, di) is a trace expression of itself,5

and each trace expression of an expression in N (�, di, +) is a union-free expression
in N (�, di). Hence, the set of union-free expressions in N (�, di) is precisely the set
of all trace expressions of expressions in N (�, di, +). By the same argument, the set
of all union-free expressions in N (�) is precisely the set of all trace expressions of
expressions in N (�, +).

However, not all trace expressions will be useful for our purposes, and, in
addition, trace expressions may contain a lot of redundancy. Therefore, we define
sublanguages of the union-free expressions in N (�), respectively N (�, di), parame-
trized by a parameter n. They consist of the so-called n-normal trace expressions of
N (�, +), respectively N (�, di, +) (Definitions 6 and 7, below). The term “normal”
will be justified in Proposition 8.

Definition 6 Let � = {c1, . . . , cp} be a set of conditionals, and let n ≥ 0. An expres-
sion g in N (�) is n-normal if (1) g is union-free, (2) |g| ≤ n, and (3) a subexpression
of g consisting only of “id,” conditionals, and composition is either “id” or does not
contain “id” and contains at most one occurrence of every conditional.

Observe that, for all n, “id” is always n-normal. We denote the n-normal expres-
sions of N (�) by N norm

n (�).

Definition 7 Let � = {c1, . . . , cp} be a set of conditionals, and let n ≥ 0. An expres-
sion f in N (�, di) is n-normal if it is of the form g1 ◦ di ◦ g2 ◦ di ◦ · · · ◦ gk−1 ◦ di ◦ gk,
with g1, . . . , gk ∈ N norm

n (�).

Hence, all n-normal expressions of N (�) are also n-normal expressions of
N (�, di). We denote the n-normal expressions of N (�, di) by N norm

n (�, di).
We now define the set T norm

n (e) of the n-normal trace expressions of e as the set
of all expressions in N norm

n (�, di) for which there exists an equivalent expression

5Actually, the only one.
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in T (e) at the level of path queries. The following result links expressions in
N (�, di, +) to normal trace expressions in N (�, di) in the context of an EDAG
of bounded depth, and hence justifies the term “normal.”

Proposition 8 Let e be an expression in N (�, di, +), let m ≥ 0, and let G be an EDAG
of depth at most m. Then, there exists a number M only dependent on e and m such
that, for all nodes v and w of G, (v, w) ∈ e(G) if and only if there exists an M-normal
trace expression f in T norm

M (e) for which (v, w) ∈ f (G).

Proof By Proposition 1, (v, w) ∈ e(G) if and only if there exists a trace expression
f in T (e) for which (v, w) ∈ f (G). In particular, this settles the “if.” For the “only
if,” assume that f is a trace expression of minimal length for which (v, w) ∈ f (G). It
remains to show that we can “normalize” f .

By Proposition 7, there exists a homomorphism h from L( f ) to G with h(s) = v
and h(t) = w. Now consider a “di”-free subexpression g of f of maximal length.
Consider the path in G defined by h(L(g)). Notice that the length of this path,
measured in the DAG underlying G, is at most m. Hence, if this path does not
contain a node with a self-loop, then there are also at most m occurrences of the
symbol “R” in g. Thus assume that on this path there is a node with a self-loop, and
hence precisely one (cf. Definition 5), say, z.

Now, assume there is a subexpression f1 of f that is a trace of k subsequent
iterations of e1, with e+

1 a transitive-closure subexpression of e, such that the following
conditions are satisfied:

1. the first “R” symbol in g mapped by h to the self-loop in z corresponds in e to an
“R” symbol in the first of the k iterations under consideration of e1;

2. the last “R” symbol in g mapped by h to the self-loop in z corresponds in e to an
“R” symbol in the last of the k iterations under consideration of e1.

Consequently, f1 need not be a maximal subexpression of f that is a trace of
consecutive iterations of e1 in e.

Suppose, for the sake of contradiction, that k > 2. Let g1 be the subexpression of
g corresponding to the k iterations under consideration of e1 in e, except for the first
and the last one.6 Obviously, h maps all nodes of the subpattern L(g1) of L( f ) to z.
Hence, we can omit g1 from f and still retain a trace expression f̂ for which h is a
homomorphism mapping L( f̂ ) to G such that h(s) = v and h(t) = w, contradicting
our assumption that f has minimal length. Hence, k ≤ 2.

Now, let ê be the expression in N (π, di) obtained from e by recursively substi-
tuting each subexpression of the form e+

1 in e by e1 ∪ e2
1. By the above argument, it

follows that the minimal subexpression of f containing all “R” symbols of g mapped
to the self-loop in z by h is also a subexpression of a trace of ê. Hence, the number of
these “R” symbols is bounded by |ê|, the length of ê. Notice that this number solely
depends on e. The number of “R” symbols of g not mapped to the self-loop in z is
bounded by m, by the same argument as before. We may therefore conclude that, in
all cases, the total number of “R” symbols in g is bounded by M := m + |ê|.

6In other words, g1 is a trace of k − 2 iterations of e1.
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Finally, we can rewrite f as f ′ = g1 ◦ di ◦ g2 ◦ di ◦ · · · ◦ gn−1 ◦ di ◦ gn, with
g1, . . . , gn ∈ N (�), by inserting “id” primitives where needed. By our previous
argument, the number of “R” symbols in gi, 1 ≤ i ≤ n, is bounded by M. Without
loss of generality, we may also assume that subexpressions of f ′ consisting solely
of “id,” conditionals, and composition are either “id” or do not contain “id,” and
contain each conditional at most once, by removing superfluous occurrences of “id”
and repetitions of conditionals. Clearly, f ′ ∈ T norm

M (e), and (v, w) ∈ f ′(G). ��

Proposition 8 becomes interesting in conjunction with Proposition 9, below.

Proposition 9 Let � = {c1, . . . , cp} be a set of conditionals, and let n ≥ 0. Then,

1. the number of atomic subexpressions of an expression of N norm
n (�) can be

bounded by a number depending only on p and n; and
2. the number of expressions in N norm

n (�) is f inite, and can be bounded by a number
depending only on p and n.

Proof First, consider item (1). Let g be an expression of N norm
n (�). We know that

g contains “R” at most n times. Unless g is “id,” we know that before the first
“R,” in between subsequent “R”s, and after the last “R,” we can have a sequence
of conditionals, in which each of these occurs at most once. Hence, the number of
atomic subexpressions of g is at most max(1, n + (n + 1)p). Item (2) now immediately
follows. ��

11 Canonical subgraphs

Given a set of conditionals � = {c1, . . . , cp}, a natural number n, a directed graph G,
and a node v of G, we shall define a sequence of so-called n-canonical subgraphs
Gv

0, Gv
1, Gv

2, . . . of G of order 0, 1, 2, . . . with respect to �. (In the notation, we shall
leave � and n implicit.)

In doing so, we have two opposite concerns:

1. For some appropriately chosen set of conditionals �, some n ≥ 0, and some order
i ≥ 0, Gv

i , the n-canonical subgraph of order i of G, will be the subgraph Gv of G
mentioned at the end of Section 7 satisfying e(Gv) �= ∅ if and only if e(G) �= ∅. In
order to work towards that goal, we must define Gv

0, Gv
1, Gv

2, . . . sufficiently large
to ensure that we can simulate the behavior of e on G on these subgraphs of G.

2. For our proof strategy to work, it is at the same time important that there is a
bound on the number of nodes of Gv that only depends on e, and not on G or v.
Therefore, we may define Gv

0, Gv
1, Gv

2, . . . not too large either. In particular, we
shall ensure that the number of nodes of each of these n-canonical subgraphs of
G with respect to � depends only on its order and on p and n.

Balancing these two concerns is the motivation behind the definitions that follow.
We start by defining Gv

0.
Thereto, let g be an expression in N norm

n (�). We define P(g) to be the set of graph
patterns that can be obtained from L(g) in the following way:

1. Start with one, two, three, or four pairwise disjoint copies of L(g).
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2. Optionally, merge some of the source nodes of these copies.
3. Optionally, merge some of the target nodes of these copies.
4. Optionally, connect some of the remaining source nodes by “di” edges.
5. Optionally, connect some of the remaining target nodes by “di” edges.

Observe that the line pattern L(g) itself is always in P(g).
Figure 3 shows a more representative example of a graph pattern that belongs

to P(g).
Now, let P be a graph pattern in P(g), and let v be a node of G. With P, we

associate a minimal (in number of elements) set Hv(P) of homomorphisms from P to
G satisfying the following conditions:

1. if there exists a homomorphism from P to G, then Hv(P) �= ∅;
2. if, for an arbitrary node v of P, there exist two homomorphisms from P to G

mapping v to different nodes of G, then Hv(P) contains two homomorphisms
from P to G mapping v to different nodes of G;

3. if P has a single source node s and there exists a homomorphism from P to G
mapping s to v, then Hv(P) contains such a homomorphism; and

4. if P has a single target node t and there exists a homomorphism from P to G
mapping t to v, then Hv(P) contains such a homomorphism.

For a good understanding, we first observe the following.

– Given P, G, and v, we choose a minimal set of homomorphisms Hv(P) satisfying
the above conditions. In other words, it is to be expected that, in general, several
minimal sets of homomorphisms satisfy the above conditions. From these, we
pick one arbitrarily, and denote it by Hv(P).

– The definition of Hv(P) refers explicitly to v only if P has either a single source
node, or a single target node, or both. In all other cases, we may therefore choose
Hv(P) independent of v.

From the definition of the set Hv(P), we can derive the following useful property.

Proposition 10 Let P be a graph pattern, let v be a node of P, and let v and z be nodes
of G. If there exists a homomorphism from P to G that does not map v to z, then Hv(P)

contains such a homomorphism.

Proof For the sake of contradiction, suppose that all homomorphisms from P to G
in Hv(P) map v to z. Since, by assumption, there is also a homomorphism from P to
G that does not map v to z, there exist two homomorphisms from P to G mapping v
to different nodes of G. By definition, Hv(P) contains two homomorphisms from P to
G mapping v to different nodes of G, a contradiction with our initial assumption. ��

We are now ready to define Gv
0, the n-canonical subgraph of order 0:

Gv
0 =

⋃

g∈N norm
n (�)

⋃

P∈P(g)

⋃

h∈Hv(P)

h(P).

In the above formula, h(P) is the subgraph of G with set of nodes {h(v) |
v is a node of P} and set of edges {(h(v), h(w)) | (v, w) is an R-labeled edge of P}.
The n-canonical subgraph of order 0 is then defined as a union of some of these
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subgraphs, where this union must be interpreted componentwise, i.e., the set of nodes
and the set of edges of this union are the union of the sets of nodes and the union of
the sets of edges of the subgraphs involved.

At this point, several aspects of the definition of the n-canonical subgraph of
order 0 have been left unexplained, in particular,

– the definition of the set of graph patterns P(g) for g ∈ N norm
n (�), and, more

specifically, why up to four copies of the line pattern L(g) are allowed in such a
graph pattern; and

– the definition of the set of homomorphisms Hv(P) for P ∈ P(g).

The only answer we can give at this point is that these definitions are tailored to make
some of the key results in Section 12 work (in particular, Lemma 8), as is explained
in that section. The essence is that, given an n-normal trace expression f in T norm

n (e)
and a homomorphism h from L( f ) to G, we wish to show via an inductive process
that there also exists such a homomorphism of which the image is fully contained
in one of the n-canonical subgraphs of order 0. As argued before, we must ensure
on the one hand that the n-canonical subgraphs of order 0 are sufficiently large for
this process to work, but, on the other hand, we must also ensure that their size can
be bounded by a bound not depending on the size of G (see Proposition 12, below).
Obtaining this delicate balance is what led to the definition above.

However, the results in Section 12 are only a first albeit important step in proving
the collapse of N (π, di, +) to N (π, di) at the level of Boolean queries on unlabeled
graphs. Indeed, the conditionals represent projection conditions, and the operands
of these projections may in turn contain projection conditions.

To accommodate this, we next define Gv
1, Gv

2, . . ., the n-canonical subgraphs of G
of order 1, 2, . . . with respect to �, with the following recursive rule. For i > 0,

Gv
i = Gv

0 ∪
⎛

⎝
⋃

w node of Gv
0

Gw
i−1

⎞

⎠ .

We note the following properties of these n-canonical subgraphs.

Proposition 11 Let � = {c1, . . . , cp} be a set of conditionals, let n ≥ 0, and let G be a
directed graph. Consider the n-canonical subgraphs of G with respect to �. For every
node v of G, and for i = 0, 1, 2, . . ., we have that (1) Gv

i is a subgraph of G, and (2)
Gv

i is a subgraph of Gv
i+1.

Proof By construction, Gv
0 is a subgraph of G for every node v of G. This is the basis

for a straightforward induction argument to show that, for i = 1, 2, . . ., Gv
i is also a

subgraph of G. This settles the first statement.
The second statement can also be shown by induction. The base case, that Gv

0
is a subgraph of Gv

1, follows immediately from the definition of Gv
1. As induction

hypothesis, assume that, for some i > 0, we have already established, for all nodes
v of G, that Gv

i−1 is a subgraph of Gv
i . As induction step, we now show that Gv

i is a
subgraph of Gv

i+1. We have that

Gv
i = Gv

0 ∪
⎛

⎝
⋃

w node of Gv
0

Gw
i−1

⎞

⎠ .
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By the induction hypothesis, we know that, for each node w of Gv
0, Gw

i−1 is a subgraph
of Gw

i . Hence, Gv
i is a subgraph of

Gv
0 ∪

⎛

⎝
⋃

w node of Gv
0

Gw
i

⎞

⎠ ,

which by definition is Gv
i+1. ��

The n-canonical subgraphs of G of higher order are put to use in Section 13, more
in particular in Proposition 15.

For the remainder of the exposition, it is important that we can also provide
bounds on the sizes of the n-canonical subgraphs of G with respect to �.

Proposition 12 Let � = {c1, . . . , cp} be a set of conditionals, let n ≥ 0, and let G be a
directed graph. For every node v of G, and for i = 0, 1, 2, . . ., the number of nodes in
Gv

i , the n-canonical subgraph of G of order i with respect to �, can be bounded by a
number depending only on p, n, and i.

Proof Let us first focus on Gv
0. From Proposition 9, it can easily be inferred that both

the number of graph patterns involved in the construction of Gv
0 and the number

of nodes they contain are bounded by numbers depending only on p and n. Let us
call these numbers P and N, respectively. Given a graph pattern P, the number of
homomorphisms from P to G in Hv(P) is bounded by 2N. To show this, we construct
a set of homomorphisms from P to G, as follows. We start with the empty set. Then,
for each node v of P, we add one or two homomorphisms to this set according to the
rules below.

1. If all homomorphisms from P to G map v to the same node of G, then select
one such homomorphism arbitrarily. Regardless of whether or not v may be the
unique source or target node of P, we see that conditions 2–4 of the definition of
Hv(P) are satisfied for that particular node.

2. Otherwise, not all homomorphisms from P to G map v to the same node of G.
If, in addition, no homomorphism from P to G maps v to v, then select two
such homomorphisms arbitrarily provided they map v to different nodes of G.
Regardless of whether or not v may be the unique source or target node of P, we
see that conditions 2–4 of the definition of Hv(P) are satisfied for that particular
node.

3. Otherwise, there is a homomorphism from P to G mapping v to v and there is
a homomorphism from P to G not mapping v to v. Then select arbitrarily one
homomorphism from the first category and one homomorphism from the second
category. Regardless of whether or not v may be the unique source or target node
of P, we see that conditions 2–4 of the definition of Hv(P) are satisfied for that
particular node.

By construction, the set of homomorphisms from P to G obtained in this way contains
at most 2N members. It clearly satisfies condition 1 as well as conditions 2–4 for all
nodes of P. Since Hv(P) is such a set of minimal size, we may finally conclude that
Hv(P) contains at most 2N homomorphisms.
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Consequently, the number of nodes of Gv
0 is bounded by 2N2 P, which depends

only on p and n. Let us denote this last number as B. Then, a straightforward
induction reveals that, for all i ≥ 0, the number of nodes of Gv

i is bounded by
B(Bi + Bi−1 + · · · + B + 1). ��

12 The key result

In Propositions 13 and 14 below, we tie together the notions introduced in the
previous sections. They are the key results on which the main result of this paper
hinges. We shall indeed bootstrap these two results in Section 13 to the desired
result, i.e., the collapse of N (F ∪ {+}) to N (F) at the level of Boolean queries for
F ⊆ {π, di}. The present section is devoted to proving Propositions 13 and 14.

Proposition 13 Let � be a set of conditionals, let m ≥ 0, and let e be an expression in
N (�, di, +). Then, there exists M ≥ 0 depending only on m and e such that, for every
EDAG G of depth at most m, and for every node v of G, if there exists a node w in G
such that (v, w) ∈ e(G), then there exist an M-normal trace expression f in T norm

M (e)
and a homomorphism h from L( f ) to G such that h(s) = v and h(L( f )) is contained in
Gv

0, with s the source node of the line pattern L( f ) and Gv
0 the M-canonical subgraph

of G of order 0 with respect to �.

Proposition 14 Let � be a set of conditionals, let m ≥ 0, and let e be an expression
in N (�, di, +). Let M ≥ 0 be a number depending only on m and e for which
Proposition 13 is satisf ied. For every node w of G, if there exists a node v in G such
that (v, w) ∈ e(G), then there exist an M-normal trace expression f in T norm

M (e) and a
homomorphism h from L( f ) to G such that h(t) = w and h(L( f )) is contained in Gw

0 ,
with t the target node of the line pattern L( f ) and Gw

0 the M-canonical subgraph of G
of order 0 with respect to �.

It is important to notice here that the homomorphism h in Propositions 13 and 14
need not be a homomorphism from L( f ) to Gv

0, respectively Gw
0 . If this were the case,

then, by Proposition 7, (v, w) ∈ e(Gv
0), respectively (v, w) ∈ e(Gw

0 ), and we would
have found the subgraphs Gv of G we set out to find at the end of Section 7 to
achieve the second step of our proof strategy.

However, this is in general not the case. Indeed, let v be a node of L( f ) which
is labeled with a conditional c. It is very well possible that (h(v), h(v)) ∈ c(G) while
(h(v), h(v)) /∈ c(Gv

0) (respectively, c(Gw
0 )), even if h(v) is a node of Gv

0 (respectively,
Gw

0 ).
As mentioned in Section 8, we are interested in the case where the conditionals

are in fact projection conditions. These have the property of being monotone. In
order to ensure that the conditions are satisfied, we will therefore have to extend the
subgraph Gv

0, and that is where the canonical subgraphs of higher order come into
play, at the final stage of our development, in Section 13.

Because of the strong analogy between both Propositions, we shall focus here on
the proof of Proposition 13. At the end of this section, we show that Proposition 13
follows from Propositions 7 and 8, provided the following lemma holds.
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Lemma 7 Let � be a set of conditionals, let n ≥ 0, let f be an n-normal expression
in N norm

n (�, di), let G be a directed graph, and let v be a node of G. If there exists a
homomorphism h from L( f ) to G such that h(s) = v, with s the source node of L( f ),
then there exists a homomorphism h′ from L( f ) to G such that h′(s) = v and h′(L( f ))
is contained in Gv

0, with Gv
0 the n-canonical subgraph of G of order 0 with respect to �.

If we write f = g1 ◦ di ◦ g2 ◦ di ◦ · · · ◦ gk−1 ◦ di ◦ gk, with g1, . . . , gk ∈ N norm
n (�),

a sensible way to prove Lemma 7 is to consider the expressions fi = g1 ◦ di ◦ · · · ◦
di ◦ gi, for i = 1, . . . , k, and to prove the Lemma by induction on i. The basis of the
induction, i = 1, is straightforward from the construction of the subgraph Gv

0. Thus
suppose that, for 1 < i ≤ k, we have established the existence of a homomorphism
h′

i−1 from L( fi−1) to G such that h′
i−1(s) = v (s being the source node of L( fi−1)) and

h′
i−1(L( fi−1)) is contained in Gv

0. We would like to extend h′
i−1 to a homomorphism h′

i
from L( fi) to G such that h′

i(L( fi)) is contained in Gv
0. Thus, consider L(gi), which is

a subpattern of L( fi). The restriction of h to the nodes of L(gi) is a homomorphism
from L(gi) to G. Hence, Hv(L(gi)) contains a homomorphism hL(gi) from L(gi) to G,
and, by construction of Gv

0, hL(gi)(L(gi)) is contained in Gv
0. Now, let ti−1 be the target

node of L( fi−1) and si the source node of L(gi). If h′
i−1(ti−1) �= hL(gi)(si), the extension

is straightforward. However, we cannot exclude that h′
i−1(ti−1) = hL(gi)(si). If this is

the case, it may even be so that hL(gi) is the only homomorphism mapping L(gi) to
G. Then, we cannot even consider an alternative homomorphism from L(gi) to G to
make our extension strategy work.

Luckily, we can avoid this pitfall by proving a slightly stronger statement.

Lemma 8 Let � be a set of conditionals, let n ≥ 0, let f be an n-normal expression
in N norm

n (�, di), let G be a directed graph, and let v be a node of G. Let Gv
0 be the

n-canonical subgraph of order 0 with respect to �. Then,

1. if there exists a homomorphism h from L( f ) to G such that h(s) = v, with s the
source node of L( f ), then there also exists a homomorphism h′ from L( f ) to G
such that h′(s) = v and h(L( f )) is contained in Gv

0;
2. in addition, if there exist homomorphisms h1 and h2 from L( f ) to G such that

h1(s) = h2(s) = v and h1(t) �= h2(t), with s and t the source and target nodes of
L( f ), then there also exist homomorphisms h′

1 and h′
2 from L( f ) to G such that

h′
1(s) = h′

2(s) = v, h′
1(t) �= h′

2(t), and h′
1(L( f )) and h′

2(L( f )) are both contained in
Gv

0.

Proof By assumption, f = g1 ◦ di ◦ g2 ◦ di ◦ · · · ◦ gn−1 ◦ di ◦ gk, with g1, . . . , gk ∈
N norm

n (�). We prove by induction on i = 1, . . . , k that the statement of the Lemma
holds for all fi := g1 ◦ di ◦ · · · ◦ di ◦ gi.

Base case: i = 1. If there exists a homomorphism h1 from L(g1) to G with h1(s) = v,
s being the source node of L(g1), then Hv(L(g1)) contains a homomorphism hL(g1)

from L(g1) to G with hL(g1)(s) = v. Clearly, h′
1 := hL(g1) is the desired homomorphism

the image of which is contained in Gv
0.

If, in addition, there exist homomorphisms h11 and h12 from L(g1) to G with
h11(s) = h12(s) = v and h11(t1) �= h12(t1), t1 being the target node of L(g1), then the
graph pattern P0 (see Fig. 4) can be mapped homomorphically to G.

Hence, Hv(P0) contains a homomorphism hP0 from P0 to G such that hP0(s) = v
and hP0(t11) �= hP0(t12). By construction of Gv

0, hP0(P0) is contained in Gv
0. The
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Fig. 4 The graph pattern P0

di

L(g1)

s

L(g1)

P0

t11

t12

restrictions of hP0 to both isomorphic copies of L(g1) in P0, respectively, are the
desired homomorphisms h′

11 and h′
12 the images of which are contained in Gv

0.

Induction hypothesis. Assume that, for some i, 1 < i ≤ k, the statement of the
Lemma holds for fi−1.

Induction step. We show that the statement of the Lemma also holds for fi. For this
purpose, we distinguish two cases.

1. There exist homomorphisms h(i−1)1 and h(i−1)2 from L( fi−1) to G such that
h(i−1)1(s) = h(i−1)2(s) = v and h(i−1)1(ti−1) �= h(i−1)2(ti−1), with s and ti−1 the source
and target nodes of L( fi−1). From the induction hypothesis, we may deduce
that there exist homomorphisms h′

(i−1)1 and h′
(i−1)2 from L( fi−1) to G such

that h′
(i−1)1(s) = h′

(i−1)2(s) = v, h′
(i−1)1(ti−1) �= h′

(i−1)2(ti−1), and h′
(i−1)1(L( fi−1)) and

h′
(i−1)2(L( fi−1)) are both contained in Gv

0.
We now show that fi satisfies both statements of the Lemma.

(a) Assume there exists a homomorphism hi from L( fi) to G such that
hi(s) = v, with s the source node of L( fi).7 By considering the restric-
tion of hi to L(gi)), we see that the line pattern L(gi) can be mapped
homomorphically to G. Hence, Hv(L(gi)) �= ∅. Let hL(gi) be a homomor-
phism in Hv(L(gi)). By construction, hL(gi)(L(gi)) is contained in Gv

0. Since
h′

(i−1)1(ti−1) �= h′
(i−1)2(ti−1), at least one of them is different from hL(gi)(si),

with si the source node of L(gi). Without loss of generality, assume that
h′

(i−1)1(ti−1) �= hL(gi)(si). Then, we can extend the homomorphism h′
(i−1)1

(from L( fi−1) to G) to the desired homomorphism h′
i (from L( fi) to G),

as follows:

h′
i(v) =

{
h′

(i−1)1(v) if v is a node of L( fi−1); and
hL(gi)(v) if v is a node of L(gi).

It is easily verified that h′
i is a homomorphism from L( fi) to G such that

h′
i(s) = v and h′

i(L( fi)) is contained in Gv
0.

7We denote the source nodes of both L( fi−1) and L( fi) by the same symbol s, which is justified
because the former line pattern is a prefix of the latter line pattern.
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Fig. 5 The graph pattern P1 si1 L(gi)

L(gi)

si2 ti2

ti1

di

P1

(b) Additionally, assume there exist homomorphisms hi1 and hi2 from L( fi) to
G such that hi1(s) = hi2(s) = v and hi1(ti) �= hi2(ti), with s and ti the source
and target nodes of L( fi).
By considering hi1(L(gi)) and hi2(L(gi)) together, we see that the graph
pattern P1 shown in Fig. 5 can be mapped homomorphically to G.
Hence, Hv(P1) �= ∅. Let hP1 be a homomorphism in Hv(P1). By construction,
hP1(P1) is contained in Gv

0. Since h′
(i−1)1(ti−1) �= h′

(i−1)2(ti−1), at least one
of them is different from hP1(si1). Without loss of generality, assume that
h′

(i−1)1(ti−1) �= hP1(si1). We now extend h′
(i−1)1 (from L( fi−1) to G) with the

restriction of hP1 to the “top” copy of L(gi) in P1 to a homomorphism h′
i1

(from L( fi) to G), in the same way as above. By construction, h′
i1(s) = v,

h′
i1(ti) = hP1(ti1), and h′

i1(L( fi)) is contained in Gv
0. Similarly, we construct

a homomorphism h′
i2 from L( fi) to G such that h′

i2(s) = v, h′
i2(ti) = hP1(ti2),

and h′
i2(L( fi)) is contained in Gv

0. It now suffices to observe that hP1(ti1) �=
hP1(ti2) to obtain that h′

i1(ti) �= h′
i2(ti).

2. All homomorphisms hi−1 from L( fi−1) to G for which hi−1(s) = v map ti−1 to the
same node of G, where s and ti−1 are the source and target nodes of L( fi−1).
We show that, also in this case, fi satisfies both statements of the Lemma.

(a) Assume there exists a homomorphism hi from L( fi) to G such that hi(s) =
v, with s the source node of L( fi). By considering the restriction of hi to
L( fi−1), we may deduce from the induction hypothesis that there exists a ho-
momorphism h′

i−1 from L( fi−1) to G such that h′
i−1(s) = v and h′

i−1(L( fi−1))

is contained in Gv
0. Let ti−1 be the target node of L( fi−1). It follows from

the initial assumption for this case that hi(ti−1) = h′
i−1(ti−1). Let us call this

node z.
By considering the restriction of hi to L(gi), we see that L(gi) can be
mapped homomorphically to G. Hence, Hv(L(gi)) �= ∅. Let hL(gi) be a
homomorphism in Hv(L(gi)). By construction, hL(gi)(L(gi)) is contained in
Gv

0. If hL(gi)(si) �= z, with si the source node of L(gi), we can extend h′
i−1

to a homomorphism h′
i from L( fi) to G such that h′

i(s) = v and h′
i(L( fi)) is

contained in Gv
0, as before.

Therefore, assume now that hL(gi)(si) = z. Obviously, hi(si) �= z. By consid-
ering hL(gi)(L(gi)) together with hi(L(gi)), we see that the graph pattern P2

shown in Fig. 6 can be mapped homomorphically to G.
Hence, Hv(P2) �= ∅. Let hP2 be a homomorphism in Hv(P2). By construction,
hP2(P2) is contained in Gv

0. Since hP2(si1) �= hP2(si2), at least one of them is
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Fig. 6 The graph pattern P2

di

L(gi)

L(gi)

si2 ti2

ti1

P2

si1

different from z. Without loss of generality, assume that hP2(si1) �= z. We
now extend h′

i−1 (from L( fi−1) to G) with the restriction of hP2 to the “top”
copy of L(gi) in P1 to a homomorphism h′

i (from L( fi) to G), as before. By
construction, h′

i(s) = v, and h′
i(L( fi)) is contained in Gv

0.
(b) Additionally, assume there exist homomorphisms hi1 and hi2 from L( fi) to

G such that hi1(s) = hi2(s) = v and hi1(ti) �= hi2(ti), with s and ti the source
and target nodes of L( fi). If ti−1 is the target node of L( fi−1), then it
follows from our initial assumption for this case that hi1(ti−1) = hi2(ti−1).
Let us call this node z. By considering the restriction of hi1 (or hi2, for that
matter) to L( fi−1), we may deduce from the induction hypothesis that there
exists a homomorphism h′

i−1 from L( fi−1) to G such that h′
i−1(s) = v and

h′
i−1(L( fi−1)) is contained in Gv

0. By our assumption, h′
i−1(ti−1) = z.8

By considering hi1(L(gi)) and hi2(L(gi)) together, we see that the graph
pattern P1 shown in Fig. 5 can be mapped homomorphically to G. Hence,
Hv(P1) �= ∅. Let hP1 be a homomorphism in Hv(P1). By construction,
hP1(P1) is contained in Gv

0. If both hP1(si1) �= z and hP1(si2) �= z, we can
extend h′

i−1 (from L( fi−1) to G) with the restrictions of hP1 to the “top”
and “bottom” copies of L(gi) in P1 to homomorphisms h′

i1 and h′
i2 (from

L( fi) to G), as before. By construction, h′
i1(s) = h′

i2(s) = v, h′
i1(ti) �= h′

i2(ti),
and h′

i1(L( fi)) and h′
i2(L( fi)) are both contained in Gv

0.
Therefore, suppose now that, e.g., hP1(si1) = z and hP1(si2) �= z.9 By consid-
ering hP1(P1) together with hi1(L(gi)) and hi2(L(gi)), we see that the graph
pattern P3 shown in Fig. 7 can be mapped homomorphically to G, with si1

being mapped to z, and all other source nodes being mapped to other nodes
of G. In particular, si2 is not mapped to z.
Hence, by Proposition 10, Hv(P3) contains a homomorphism hP3 from P3 to
G for which hP3(si2) �= z. By construction, hP3(P3) is contained in Gv

0.

8Notice that it is not useful to consider hi1 and hi2 together in this argument, as the respective
homomorphisms h′

(i−1)1 and h′
(i−1)2 that can be derived from it using the induction hypothesis may

well coincide. Indeed, all we know about these homomorphisms is that h′
(i−1)1(s) = h′

(i−1)2(s) = v,
h′

(i−1)1(ti−1) = h′
(i−1)2(ti−1) = z, and that h′

(i−1)1(L( fi−1)) and h′
(i−1)2(L( fi−1)) are both contained in

Gv
0, all properties that do not distinguish h′

(i−1)1 and h′
(i−1)2.

9The case that hP1 (si1) �= z and hP1 (si2) = z is of course completely symmetric and will therefore not
be treated separately.
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Fig. 7 The graph pattern P3

di

P3

L(gi) ti3

di

L(gi)

si4 ti4

si3

di

di

L(gi) ti1

di

L(gi)

si2 ti2

si1

If also hP3(si1) �= z, we can extend h′
i−1 (from L( fi−1) to G) with the restric-

tions of hP3 to the two “upper” copies of L(gi) in P3 to homomorphisms
h′

i1 and h′
i2 (from L( fi) to G), as before. By construction, h′

i1(s) = h′
i2(s) = v,

h′
i1(ti) �= h′

i2(ti), and h′
i1(L( fi)) and h′

i2(L( fi)) are both contained in Gv
0.

If, however, hP3(si1) = z, then hP3(si3) �= z and hP3(si4) �= z, and we can
achieve the same result as above, this time using the two “lower” copies
of L(gi) in P3.
It remains to consider the case where hP1(si1) = hP1(si2) = z. In this case,
the homomorphism hP1 can readily be transformed into a homomorphism
hP4 from the graph pattern P4, shown in Fig. 8, to G.
By considering hP4(P4) together with hi1(L(gi)) and hi2(L(gi)), we see that
the graph pattern P5 shown in Fig. 9 can be mapped homomorphically
to G.
Hence, Hv(P5) �= ∅. Let hP5 be a homomorphism in Hv(P5). By construc-
tion, hP5(P5) is contained in Gv

0.
If hP5(si1) �= z, we can extend h′

i−1 (from L( fi−1) to G) with the restrictions
of hP5 to the two “upper” copies of L(gi) in P5 (both originating in si1) to
homomorphisms h′

i1 and h′
i2 (from L( fi) to G), as before. By construction,

h′
i1(s) = h′

i2(s) = v, h′
i1(ti) �= h′

i2(ti), and h′
i1(L( fi)) and h′

i2(L( fi)) are both
contained in Gv

0.
If, however, hP5(si1) = z, then hP5(si2) �= z and hP5(si3) �= z, and we can
achieve the same result as above, this time using the two “lower” copies
of L(gi) in P5.

Fig. 8 The graph pattern P4

P4

L(gi)

si

L(gi)

ti1

ti2

di
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Fig. 9 The graph pattern P5

di

L(gi) ti3

di

L(gi)

si3 ti4

si2

di

P5

L(gi)

si1

L(gi)

ti1

ti2
di

So, in both cases, we were able to complete the induction step successfully, which
concludes the proof. ��

Of course, Lemma 7 immediately follows from Lemma 8.
The proof of Proposition 13 (and hence also that of Proposition 14) is now

straightforward.

Proof (Proposition 13) Let � be a set of conditionals, let m ≥ 0, and let e be an
expression in N (�, di, +). Let G be an EDAG of depth at most m. Let M be a
number for which Proposition 8 is satisfied. Now, let v be a node of G. If there exists
a node w in G such that (v, w) ∈ e(G), then, by Proposition 8, there exists an M-
normal trace expression f in T norm

M (e) such that (v, w) ∈ f (G). By Proposition 7,
there exists a homomorphism h from L( f ) to G with h(s) = v and h(t) = w, with s
and t the source and target nodes of L( f ). Finally, by Lemma 7, there also exists a
homomorphism h′ from L( f ) to G such that h′(s) = v and h′(L( f )) is contained in
Gv

0, with Gv
0 the M-canonical subgraph of G of order 0 with respect to �. ��

13 The collapse result

We are now ready to deal with expressions in N (π, di, +) and bootstrap Proposi-
tions 13 and 14 by considering that conditionals stand for projection subexpressions.
We recall that the homomorphism h in the statements of these propositions is a
homomorphism from L( f ) to G such that h(s) = v and h(L( f )) is contained in
Gv

0, but not necessarily a homomorphism from L( f ) to Gv
0, the reason being that

a node of Gv
0 satisfying a particular conditional within G does not have to satisfy

the same conditional within Gv
0. Using that the conditionals stand for projection

subexpressions, and using the monotonicity of the projection operator, we are able to
establish that Gv

0 can be extended to a higher-order canonical subgraph of G, say Gv
i ,

such that h is also a homomorphism from L( f ) to Gv
i . Only then will we be able to
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conclude that (v, h(t)) ∈ e(Gv
i ), with t the target node of L( f ), and can we complete

our argument.
For this purpose, we first define the nesting depth of projection of an expression

e in N (π, di, +), denoted depthπ (e). Remember that we already used this notion
informally in Section 8 to motivate the introduction of conditionals as abbreviations
for projection subexpressions. Here, we define that notion formally:

1. if e is in N (di, +), then depthπ (e) = 0;
2. depthπ (π1(e)) = depthπ (π2(e)) = depthπ (e) + 1;
3. depthπ (e1 ∪ e2) = max(depthπ (e1), depthπ (e2));
4. depthπ (e1 ◦ e2) = max(depthπ (e1), depthπ (e2)); and
5. depthπ (e+) = depthπ (e).

In the sequel, we shall refer to nesting depth of projection as “depth” for short.
We are now going to bootstrap Propositions 13 and 14 by remembering that

conditionals represent projection subexpressions, and, in doing so, linking the depth
of the expression to the order of the canonical subgraph required for this purpose.

Lemma 9 Let δ ≥ 0, and let e be an expression of depth δ in N (π, di, +). Let �(e) =
{πi1( f1), . . . , πip( fp)}, i1, . . . , ip ∈ {1, 2}, be the set of all projection subexpressions of e.
Let � = {c1, . . . , cp}, where, for j = 1, . . . , p, the conditional c j has the same semantics
as the projection subexpression πi j( f j) of e. Let m ≥ 0. Then, for every expression
e′ ∈ N (�(e), di, +)10 with depth δ′ ≤ δ, there exists M ≥ 0 depending only on m and
e such that, for every EDAG G of depth at most m, we have the following:

1. for every node v in G, if there exists a node w in G such that (v, w) ∈ e′(G), then
there exists a node w′ in Gv

δ′ such that (v, w′) ∈ e′(Gv
δ′), with Gv

δ′ the M-canonical
subgraph of G of order δ′ with respect to �; and

2. for every node w in G, if there exists a node v in G such that (v, w) ∈ e′(G), then
there exists a node v′ in Gw

δ′ such that (v′, w) ∈ e′(Gw
δ′), with Gv

δ′ the M-canonical
subgraph of G of order δ′ with respect to �.

Proof Let M be a number for which Propositions 13 and 14 are satisfied. We prove
both claims of Lemma 9 by a simultaneous induction on the depth δ′ of the expres-
sion e′.

Base case: δ′ = 0. In that case, e′ is an expression of N (di, +) (and hence also
of N (�, di, +)). By Proposition 13, there exist an M-normal trace expression f ′ in
T norm

M (e′) and a homomorphism h from L( f ′) to G such that h(s) = v and h(L( f ′))
is contained in Gv

0, with s the source node of the line pattern L( f ′) and Gv
0 the M-

canonical subgraph of G of order 0 with respect to �. Since there are no conditionals
at play here, h is also a homomorphism from L( f ′) to Gv

0. Hence, if t is the target node
of L( f ′), then (v, h(t)) ∈ f ′(Gv

0) ⊆ e′(Gv
0). This settles the first claim. The second

claim is proved in a completely analogous way, using Proposition 14 instead of
Proposition 13.

10We clarify that expressions in N (�(e), di, +) may contain projection subexpressions, provided
they are in �(e).
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Induction hypothesis. Assume that both claims of Lemma 9 have been established
for all expressions in N (�(e), di, +) with depth strictly smaller than δ′.

Induction step. Let e′ be an arbitrary expression in N (�(e), di, +) with depth δ′.
We prove that both claims of Lemma 9 hold for e′.

We start with the first claim. Thus, assume that, for some node v in G, there
exists a node w in G such that (v, w) ∈ e′(G). Without loss of generality, let
πi1( f1), . . . , πip′ ( fp′), p′ ≤ p, be all projection subexpressions at the outermost level
in e′, i.e., all projection subexpressions of e′ that do not occur within another projec-
tion subexpression of e′. Now, let e′′ be the expression in N (�, di, +) obtained from
e′ by replacing each projection subexpression πi j( f j), 1 ≤ j ≤ p′, by the conditional
c j. By construction, e′ and e′′ are equivalent at the level of path queries. Hence,
(v, w) ∈ e′′(G). It now follows from Proposition 13 that there exist an M-normal
trace expression f ′′ ∈ T norm

M (e′′) and a homomorphism h from L( f ′′) to G such that
h(s) = v and h(L( f ′′)) is contained in Gv

0, with s the source node of the line pattern
L( f ′′) and Gv

0 the M-canonical subgraph of G of order 0 with respect to �. By
Proposition 11, (2), h(L( f ′′)) is contained in Gv

δ′ , the M-canonical subgraph of G
of order δ′. We next show that h is actually a homomorphism from L( f ′′) to Gv

δ′ .
Thereto, let v be a node of L( f ′′) labeled with some conditional c j, 1 ≤ j ≤ p′,

and let h(v) = z. Since h is a homomorphism from L( f ′′) to G, (z, z) ∈ c j(G) =
πi j( f j)(G). First consider the case that i j = 1. Then, there is a node u in G such
that (z, u) ∈ f j(G). Notice that f j is in N (�(e), di, +) and that δ j := depthπ ( f j) < δ′.
By the first claim of the induction hypothesis, there exists a node u′ in Gz

δ j
, the M-

canonical subgraph of G of order δ j with respect to �—which, by Proposition 11, is
contained in Gz

δ′−1, the M-canonical subgraph of G of order δ′ − 1 with respect to �—
such that (z, u′) ∈ f j(Gz

δ j
) ⊆ f j(Gz

δ′−1), by the monotonicity of f j. Since, by definition,
Gz

δ′−1 is a subgraph of Gv
δ′ , and again by the monotonicity of f j, (z, u′) ∈ f j(Gv

δ′),
and hence (z, z) ∈ π1( f j)(Gv

δ′) = c j(Gv
δ′). In the case that i j = 2, we make a similar

reasoning with the second claim of the induction hypothesis to arrive at the same
conclusion. In summary, h(v) is a node that does not only satisfy c j in G, but also
in Gv

δ′ , and hence h is indeed a homomorphism from L( f ′′) to Gv
δ′ . If t is the target

node of L( f ′′), then, by Proposition 7, (v, h(t)) ∈ f ′′(Gv
δ′) ⊆ e′′(Gv

δ′) = e′(Gv
δ′). This

concludes the induction step for the first claim of Lemma 9. The induction step for the
second claim is completely analogous, using Proposition 14 instead of Proposition 13.

��

Since e is in N (di,�(e), +), Lemma 9 also holds for e′ := e. Thus, its first claim
can be specialized as follows.

Proposition 15 Let δ ≥ 0, and let e be an expression of depth δ in N (π, di, +). Let
�(e) = {πi1( f1), . . . , πip( fp)}, i1, . . . , ip ∈ {1, 2}, be the set of all projection subexpres-
sions of e. Let � = {c1, . . . , cp}, where, for j = 1, . . . , p, the conditional c j has the same
semantics as the projection subexpression πi j( f j) of e. Let m ≥ 0. Then, there exists
M ≥ 0 depending only on m and e such that, for every EDAG G of depth at most m,
and for every node v in G, if there exists a node w in G such that (v, w) ∈ e′(G), there
exists a node w′ in Gv

δ such that (v, w′) ∈ e′(Gv
δ ), with Gv

δ the M-canonical subgraph of
G of order δ with respect to �.
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We are now ready to complete the second step of our proof strategy.

Theorem 3 Let e be in N (π, di, +) and let m ≥ 0. Then, there exists e′ in N (π, di)
such that, for each EDAG G with depth at most m, e(G) �= ∅ if and only if e′(G) �= ∅.

Proof Let �(e) = {πi1( f1), . . . , πip( fp)}, i1, . . . , ip ∈ {1, 2}, be the set of all projection
subexpressions of e. Let � = {c1, . . . , cp}, where, for j = 1, . . . , p, the conditional c j

has the same semantics as the projection subexpression πi j( f j) of e. Let G be an
EDAG of depth at most m, and let M ≥ 0 be a number only depending on m and e
for which Proposition 15 is satisfied. For every node v of G, let Gv

δ be the M-canonical
subgraph of G of order δ with respect to �, with δ := depthπ (e), the depth of e. By
Proposition 12, there exists D ≥ 0, depending only on p, M, and δ, such that the
number of nodes of Gv

δ is bounded by D. In particular, D neither depends on the
particular graph G under consideration, nor on the particular node v of G under
consideration.

Now, let e′ be the expression in N (π, di) obtained from e by exhaustively replac-
ing each subexpression (at any level) of the form f + by

⋃D
i=1 f i. By monotonicity,

e′(G) ⊆ e(G), hence the “if.”
We now turn to the “only if.” If e(G) �= ∅, then there exist nodes v and w in

G such that (v, w) ∈ e(G). By Proposition 15, there exists a node w′ in Gv
δ such

that (v, w′) ∈ e(Gv
δ). Since the number of nodes of Gv

δ is bounded by D, it follows
that e(Gv

δ ) = e′(Gv
δ ), as there is no point in making more than D iterations for

computing a transitive closure. Hence, (v, w′) ∈ e′(Gv
δ ) ⊆ e′(G), by monotonicity and

Proposition 11, (1). We may thus conclude that e′(G) �= ∅. ��

Let F ⊆ {π, di} be a set of nonbasic features. If e is an expression in N (F ∪ {+}),
then the expression e′ constructed in the proof of Theorem 3 is in N (F). Hence, we
can generalize Theorem 3 as follows.

Corollary 1 Let F ⊆ {π, di} be a set of nonbasic features, let e be in N (F ∪ {+}), and
let m ≥ 0. Then, there exists e′ in N (F) such that, for each EDAG G with depth at
most m, e(G) �= ∅ if and only if e′(G) �= ∅.

Observe that the bound D on the size of the subgraphs Gv
δ in the proof of

Theorem 3 (cf. also Proposition 12) is of very high complexity in m, as a consequence
of which it may require very large graphs G before the difference between G and its
subgraphs Gv

δ becomes significant.
Now that we have completed the second step of our proof strategy, we can prove

Theorem 1, the main result of this paper.

Proof (Theorem 1) In Theorem 2, we established that, for every graph G,
suffF,e(G) �= ∅ implies e(G) �= ∅, with suffF,e(G) the expression in N (F) tabulated
in Table 1. By Proposition 6, we know that suffF,e(G) = ∅ implies that G is an
EDAG of depth at most 2|e|. If we now apply Corollary 1 for m = 2|e|, we find that
there exists an expression e′ in N (F) such that, for every graph G, suffF,e(G) = ∅
implies that e(G) �= ∅ if and only if e′(G) �= ∅. Finally, let ẽ := suffF,e ∪ e′, which is
also an expression in N (F). Let G be an arbitrary graph. If suffF,e(G) �= ∅, then
e(G) �= ∅ and, by construction, also ẽ(G) �= ∅. If, on the other hand, suffF,e(G) = ∅,
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then ẽ(G) = e′(G), and hence e(G) �= ∅ if and only if ẽ(G) �= ∅. Combining both
cases, we see that, for every graph G, e(G) �= ∅ if and only if ẽ(G) �= ∅. ��

14 Conclusions and future work

We now have a complete understanding of the impact of adding transitive closure
to the relation algebra fragments considered. While it is well-known that transitive
closure adds expressive power to all fragments at the level of path queries [3],
and the same was established in previous work of the present authors [11] at the
level of Boolean queries on labeled graphs (multiple input relations), we have now
established, in contrast, that, while adding transitive closure adds expressive power to
most relation algebra fragments at the level of Boolean queries on unlabeled graphs
(a single input relation), it does not add expressive power to N (F), with F a set of
nonbasic features, if and only if F ⊆ {π, di}.

As a side product of our efforts to prove this last result, we have also established a
“normal form” for an expression ẽ in N (F) equivalent to an expression e in N (F ∪
{+}), namely ẽ := suffF,e ∪ e′. The left-hand term of this union only depends on F
and |e|,11 and the right-hand term can be obtained from the original expression e by
exhaustively replacing subexpressions of the form f + by

⋃D
i=1 f i, for some bound D

only depending on |e|.
Towards future work, one may examine this bound D more closely. As observed

towards the end of Section 13, D is of very high complexity in |e|. As the main goal of
this paper was to show the collapse of N (F ∪ {+}) to N (F), we have not attempted
to search for the tightest bound possible. From a practical point of view, it would
indeed be interesting to find a better bound D, or to identify a reasonably large class
of expressions in N (F ∪ {+}) for which the bound D could be improved significantly.

Another direction for future research is to investigate similar problems as the ones
addressed in this paper, but for other algebras. An operation we did not consider
here, for instance, is residuation. Residuation [22] is similar to the standard relational
division operation in databases, and corresponds to the set containment join [18]. The
present authors have only achieved partial results in this respect, in part also because
they have not yet been able to establish the complete Hasse diagram for the relative
expressive power of the various fragments of the relation algebra with residuation,
even if transitive closure is not considered.

Another direction the authors are currently pursuing is establishing the complete
Hasse diagram for the relative expressive power of the various relation algebra
fragments, and this both at the levels of path queries and Boolean queries, for the
cases where the input graph is a tree. Of course, if it has been established that
two fragments are equivalent for general input graphs, they must also be equivalent
on trees. However, it is possible that two fragments can be separated for general
graphs but not for trees as input. Some results on the expressive power of XPath
fragments (e.g., [6, 9, 14, 19, 20, 26]) can readily be used for this purpose, but some
relation algebra features do not straightforwardly correspond with XPath operations.
Consequently, the results of this study will contribute to a better understanding of

11Even stronger, it is a fixed expression in N (F ∪ { f }), where f is short for R|e|.
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querying tree-shaped documents, in particular in the case where several documents
are involved.
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