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ABSTRACT
In this paper, we present, to our knowledge, the first known
I/O efficient solutions for computing the k-bisimulation
partition of a massive directed graph, and performing
maintenance of such a partition upon updates to the
underlying graph. Ubiquitous in the theory and application
of graph data, bisimulation is a robust notion of node
equivalence which intuitively groups together nodes in a
graph which share fundamental structural features. k-
bisimulation is the standard variant of bisimulation where
the topological features of nodes are only considered within
a local neighborhood of radius k > 0.

The I/O cost of our partition construction algorithm is
bounded by O(k · sort(|Et|) + k · scan(|Nt|) + sort(|Nt|)),
while our maintenance algorithms are bounded by O(k ·
sort(|Et|) + k · sort(|Nt|)). The space complexity bounds
are O(|Nt|+ |Et|) and O(k · |Nt|+ k · |Et|), resp. Here, |Et|
and |Nt| are the number of disk pages occupied by the input
graph’s edge set and node set, resp., and sort(n) and scan(n)
are the cost of sorting and scanning, resp., a file occupying
n pages in external memory. Empirical analysis on a variety
of massive real-world and synthetic graph datasets shows
that our algorithms perform efficiently in practice, scaling
gracefully as graphs grow in size.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms; E.1 [Data
Structures]: Graphs and networks

Keywords
graph bisimulation; structural index; external memory
algorithm

1. INTRODUCTION
Massive graph-structured datasets are becoming increas-

ingly common in a wide range of applications. Examples
such as social networks, linked open data, and biological
networks have drawn much attention in both industry and
academic research. In reasoning over graphs, a fundamental
and ubiquitous notion is that of bisimulation, which is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505752.

characterization of when two nodes in a graph share basic
structural properties such as neighborhood connectivity.
Bisimulation arises and is widely adopted in a surprisingly
large range of research fields [28]. In data management,
bisimulation partitioning (i.e., grouping together bisimilar
nodes in order to reduce graph size) is often a basic step
in indexing semi-structured datasets [23], and also finds
fundamental applications in RDF [25] and general graph
data (e.g., compression [5, 9], query processing [17], data
analytics [8, 31]).

It is often the case that bisimulation reductions of real
graphs result in partitions which are too refined for effective
use. Hence, a notion of localized k-bisimulation has proven
to be quite successful in data management applications (e.g.,
[11, 17, 26, 32]). k-bisimulation is the variant of bisimulation
where topological features of nodes are only considered
within a local neighborhood of radius k > 0. With a pay-
as-you-go nature, k-bisimulation is cheaper to compute and
maintain, cost adjustable, and faithfully representative of
the bisimulation partition within the local neighborhood.

State of the art
Algorithms for bisimulation partitioning have been studied
for decades, with well-known algorithms such as those of
Paige and Tarjan [24] and more recent work (e.g., [7]),
having effective theoretical behavior.

In practice, however, state-of-the-art solutions face a
critical challenge: all known approaches for computing
bisimulation are internal-memory based solutions1. As
such, their inherently random memory access patterns do
not translate to efficient I/O-bound solutions, where it is
crucial to avoid such access patterns. Consequently, when
processing graphs which do not fit entirely in main memory
the performance of these algorithms decreases drastically.

The reality is that, in practice, many graphs of interest
are too large to be processed in main memory. Indeed,
massive graphs are now ubiquitous [8, 15]. Furthermore,
the size of graphs will only continue to grow as technologies
for generating and capturing data continue to improve and
proliferate. We can safely conclude that it will become
increasingly infeasible to apply existing internal-memory
bisimulation partition algorithms in practice.

To process real graphs, therefore, we must necessarily
turn to either external memory, distributed, or parallel
solutions. There has been some work on parallel (e.g., [27,
30]) and distributed (e.g., [4]) approaches to bisimulation
computation, and, recently, external memory solutions on
restricted acyclic and tree-structured graphs [16]. However,
to our knowledge there is no known effective solution for

1With the single exception of Hellings et al. [16] which we
discuss below in Section 3.2.
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computing bisimulation and k-bisimulation partitions on
arbitrary graph structures in external memory. Such an
algorithm would not only enable us to process big graphs
on single machines, but also provide an essential step for
parallel and distributed solutions (e.g., MapReduce [20]) to
further scale their performance on real graphs. As noted in
paper [20] and many other researches (e.g., [19]), in many
cases, single machine external memory algorithms are more
competitive than distributed algorithms due to their lack of
communication overhead and their effective use of available
infrastructure. Therefore, the study of external memory
solutions is clearly warranted.

Our contributions
Given these motivations, we have studied external memory
solutions for reasoning about k-bisimulation on arbitrary
graphs. In this paper, we present the results of our study,
which makes the following high-level contributions.
• We present the first known I/O efficient external mem-

ory based algorithm for constructing the k-bisimulation
partition of a disk-resident graph. The I/O cost
of this algorithm is bounded by O(k · sort(|Et|) +
k · scan(|Nt|) + sort(|Nt|)), with space complexity
O(|Nt| + |Et|), where |Et| and |Nt| are the number
of disk pages occupied by the input graph’s edge set
and node set, resp., and sort(n) and scan(n) are the
cost of sorting and scanning, resp., a file occupying n
pages in external memory.
• We present the first known I/O efficient external

memory based algorithms for performing maintenance
on a disk-resident k-bisimulation graph partition, with
I/O cost bounded by O(k · sort(|Et|) + k · sort(|Nt|)),
and space complexity O(k · |Nt|+ k · |Et|).
• We present the results of an extensive empirical

analysis of our solutions on a variety of massive real-
world and synthetic graph datasets, showing that our
algorithms not only perform efficiently, but also scale
gracefully as graphs grow in size. For example, the
10-bisimulation partition of a graph having 1.4 billion
edges can be computed with our solution within a day
on commodity hardware, while this would take weeks,
if not months, for a traditional in-memory algorithm
to accomplish in the same environment.

The rest of the paper is organized as follows. In the next
section we give our basic definitions and data structures
used. We then describe in Section 3 our solution for
constructing k-bisimulation partition. Next, Section 4
presents algorithms for keeping an existing partition up to
date, in the face of updates to the underlying graph. Section
5 presents the results of our empirical study of all algorithms.
We then conclude in Section 6 with a discussion of future
directions for research.

2. PRELIMINARIES

2.1 Data model and definitions
Our data model is that of finite directed node- and edge-

labeled graphs 〈N,E, λN , λE〉, where N is a finite set of
nodes, E ⊆ N × N is a set of edges, λN is a function from
N to a set of node labels LN , and λE is a function from E
to a set of edge labels LE .

Definition 1. Let k be a non-negative integer and G =
〈N,E, λN , λE〉 be a graph. Nodes u, v ∈ N are called k-
bisimilar (denoted as u ≈k v), iff the following holds:

1. λN (u) = λN (v),

2. if k > 0, then ∀u′ ∈ N [(u, u′) ∈ E ⇒ ∃v′ ∈ N [(v, v′) ∈
E, u′ ≈k−1 v′ and λE(u, u′) = λE(v, v′)1]], and

3. if k > 0, then ∀v′ ∈ N [(v, v′) ∈ E ⇒ ∃u′ ∈ N [(u, u′) ∈
E, v′ ≈k−1 u′ and λE(v, v′) = λE(u, u′)]].

It can be easily shown that the k-bisimilar relation is an
equivalence relation.

We illustrate Definition 1 with an example. Consider the
graph given in Figure 1. It is a small social network graph,
in which nodes 1 and 2 are 0- and 1- bisimilar but not 2-
bisimilar.

1

M

2

M

4
P

3
P

5
P

6
P

w

l

w

ll

l

l

Figure 1: Example graph of
a social network, where nodes
1 and 2 have label M (short
for “manager”), and the other
nodes have label P (short for
“people”). The edge label l
is short for “likes”, while w is
short for “works for”.

Recall from Section 1
that our interest in this
paper is in computing the
k-bisimulation partition of
a massive graph, and per-
forming maintenance on
the result under updates
to the original graph. By
massive, we mean that
both the set of nodes and
the set of edges of the
graph are too big to fit
into main memory. By
a partition of the graph,
we mean an assignment of

each node u of the graph to a partition block, which is the
unique subset of nodes in the graph of which the members
are k-bisimilar to u.

In particular, we are interested in constructing partition
“identifiers.”

Definition 2. A k-partition identifier for graph G =
〈N,E, λN , λE〉 and k ≥ 0 is a set of k + 1 functions
P = {pId0, . . . , pIdk} such that, for each 0 ≤ i ≤ k, pId i is a
function from N to the integers, and, for all nodes u, v ∈ N ,
it holds that pId i(u) = pId i(v) iff u ≈i v.

A fundamental tool in our reasoning about k-bisimulation
is the notion of node signatures.

Definition 3. Let G = 〈N,E, λN , λE〉 be a graph, k ≥
0, and P = {pId0, . . . , pIdk} be a k-partition identifier for
G. The k-bisimulation signature of node u ∈ N is the pair
sigk(u) = (pId0(u), L) where:

L =

{
∅ if k = 0,

{(λE(u, u′), pIdk−1(u ′)) | (u, u′) ∈ E} if k > 0.

We then have the following fact.

Proposition 1. pIdk(u) = pIdk(v) iff sigk(u) = sigk(v)
(k ≥ 0).

Proof omitted.
Proposition 1 is the basis of all algorithms in this paper.

The basic idea is that a node’s k-bisimulation partition
block can be determined by its k-bisimulation signature,
which in turn is determined by the (k − 1)-bisimulation
partition of the graph. Intuitively, in order to compute
the k-bisimulation partition, we compute the graph’s j-
bisimulation (0 ≤ j ≤ k) partitions bottom-up, starting
from j = 0. We call each such intermediate computation
the iteration j computation.

It is straightforward to show that the k-bisimulation
partition of a graph is unique. Hence, in the sequel, we can

1Note that we use λE(u, u′), instead of λE((u, u′)), for ease
of readability.
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safely talk about k-partition identifiers as unique objects.
Also, note that we will use integer node identifier values to
designate nodes in N . Therefore, in the following discussions
the functions sigk and pIdk both could take node identifiers
(i.e., integers) as input.

Table 1: k-bisimulation for the example graph in Figure 1 (k =
0, 1, 2)

nId pId0(nId) sig1(nId) pId1(nId) sig2(nId) pId2(nId)
1 A A, {(w,A), (l, B)} C A, {(w,C), (l, E)} G
2 A A, {(w,A), (l, B)} C A, {(w,C), (l, F )} H
3 B B, {(l, A)} D B, {(l, C)} I
4 B B, {(l, B)} E B, {(l,D)} J
5 B B, {(l, A)} D B, {(l, C)} I
6 B B, {} F B, {} K

Table 1 shows one way of assigning k-bisimulation (k =
0, 1, 2) partition identifiers and signatures for the example
graph in Figure 1, where the nId denotes the unique
identifier for each node, and pId i(nId) and sigj(nId)
(0 ≤ i ≤ 2 and 0 < j ≤ 2) are presented accordingly.
For k = 0, nodes are grouped into two partitions by node
labels (given identifiers A and B). Then for k = 1, 2,
signatures are constructed according to Definition 3, and
then distinct partition identifiers are assigned to distinct
signatures, following Proposition 1.

2.2 Data structures
We assume that graphs are saved on disk in the form of

fixed column tables (node set as table Nt and edge set as
table Et). We also assume that these tables can have several
copies sorted on different columns. In later discussions, we
will use the notation X.y to refer to column y of table X.

We have the following possible attributes for Nt:

nId node identifier (note that this is the same
as row identifier in the table; we leave this
attribute here for clarity of the discussion).

nLabel node label
pIdold nId bisimulation partition identifier for the given

nId from last computation iteration
pIdnew nId bisimulation partition identifier for the given

nId from the current computation iteration
pIdj nId j bisimulation partition identifier for the

given nId (j = 0, 1, . . . , k)

and for Et:

sId source node identifier
tId target node identifier
eLabel edge label
pIdold tId bisimulation partition identifier for the given

tId from last computation iteration

We further assume that we have a signature storage
facility S, which stores the mapping between signatures
and their corresponding partition identifiers. S is a
data structure having only one idempotent function called
S.insert(). For node u ∈ N , S.insert() takes sigj(u)
(0 ≤ j ≤ k) as input, and provides pId j(u) as output.
Essentially S.insert() implements the one to one mapping
function from sigj to pId j . The implementation details of S
will be discussed in Section 3.2.

For ease of discussion and investigation, we assume in
what follows that the Nt and Et are each just one file
sequentially filled with fixed length records. Moreover,
in this paper we make use of sort merge join to the
extent possible, since it is a very basic way to achieve
I/O efficient results. However, many possibilities could
be explored for implementing these data structures (e.g.,
indexing techniques) and join algorithms to further optimize

our presented results. We leave such investigations open for
future research.

Finally, we also assume that we have a (possibly external
memory based) priority queue available. In our empirical
study below, we use the off-the-shelf I/O efficient priority
queue implementation provided by the open source STXXL
library [6].

2.3 Cost model
Since our focus is on disk-resident datasets, we use stan-

dard I/O complexity notions to analyze our algorithms [1].
The primary concern here is to minimize the number of I/Os
needed to complete the task at hand.

Suppose we have table X, space to hold B disk pages in
internal memory, and X occupies |X| pages on disk. In what
follows, we will use the following notation:
• sort(|X|) denotes the number of I/Os when sorting

table X on some given column(s). This will take

2|X|(1 + dlogB−1d |X|B ee) I/Os for a standard external
memory based merge sort.
• scan(|X|) denotes the number of I/Os when scanning

over table X. This will take |X| I/Os.

3. CONSTRUCTING K -BISIMULATION
PARTITIONS

We present our algorithm for k-bisimulation partition
computation in Algorithm 1. The algorithm is inspired by
Proposition 1, meaning for each node in the input graph,
to construct its signature and find a one-to-one mapping
number (partition identifier) for that signature.

In iteration j = 0, we assign distinct partition identifiers
to nodes based on their nLabels. For other iterations j > 0,
our algorithm mainly performs two things for each node ID
uId ∈ πnId(Nt) (line 14 to 17): (1) construct sigj(uId);
and (2) insert sigj(uId) to S, record the returning pId j(uId)
in the corresponding row in Nt. To prepare the necessary
information for constructing sigj(uId), we need to fill in the
missing columns of Et (line 5 to 10). Several scans and sorts
on tables are involved for each iteration. Note that some
operations in the algorithm can be merged as one in practice.
We present them separately just to make the presentation
clearer. A detailed description is given in Section 3.1.

3.1 Details of Algorithm 1 (Build Bisim())

Input and output. The input variables of Algorithm 1 are
node table Nt, edge table Et and k, which is the degree of
local bisimilarity from Definition 1. The output variables
are Nt and Et. The schema of Nt is (nId, nLabel, pId0 nId ,
pIdold nId , pIdnew nId); the schema of Et is (sId, eLabel, tId,
pIdold tId).

k = 0, line 2 to 4. According to Definition 1, k = 0
means nodes having the same labels should be assigned the
same partition identifier. We achieve this by sorting Nt on
nLabel column. When scanning Nt, for each new nLabel
we encounter, we assign a new integer (e.g., a predefined
counter) to the corresponding nId, filling it in the pId0 nId

and pIdnew nId columns. This will take O(sort(|Nt|)) +
O(scan(|Nt|)) I/Os. Using a hash map could achieve the
same goal as well, with the same I/O upper bound.

k > 0, line 5 to 18. For k > 0, we first perform a
recursive call to the algorithm, ensuring we work in a
bottom-up manner. For iteration 1 (k = 1), we sort Nt
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Algorithm 1 Compute the k-bisimulation equivalence classes of a graph

1: procedure Build Bisim(Nt, Et, k)
2: if k = 0 then
3: fill in the pId0 nId and pIdnew nId columns of Nt . O(sort(|Nt|)) +O(scan(|Nt|))
4: return (Nt, Et)

5: (Nt,Et)←Build Bisim(Nt, Et, k − 1) . k > 0, recursive call
6: if k = 1 then
7: Nt ← sort(Nt) by nId . O(sort(|Nt|))
8: Et ← sort(Et) by tId . O(sort(|Et|))
9: scan Nt, move content of column pIdnew nId to pIdold nId . O(scan(|Nt|))

10: fill in the pIdold tId column of Et . O(scan(|Et|)) +O(scan(|Nt|))
11: initialize S
12: F ← πα(Et), where α = (sId, eLabel, pIdold tId)
13: F ← sort(F ) by sId, eLabel, pIdold tId , removing duplicates . O(sort(|Et|))
14: for each uId ∈ πnId(Nt) do . overall O(scan(|Et|)) +O(scan(|Nt|)) + cost of S
15: construct sigk(uId) from F . merge join with F
16: pIdk(uId) ← S.insert(sigk(uId))
17: record pIdk(uId) in Nt.pIdnew nId where nId = uId

18: return (Nt, Et)

and Et on nId and tId, preparing them for later merge
join operations. The algorithm’s idea is to construct the
signature of each node in order to distinguish it from other
nodes according to the k-bisimilar relation. If we can
properly fill in the pIdold tId column of Et, and join it with
Nt on nId=sId, the information combined from columns
{pId0 nId , eLabel, pIdold tId} is enough for constructing the
signature. The column eLabel is already filled in before
algorithm starts. The column pId0 nId is filled in during
iteration 0 (line 2 to 4). The column pIdold tId is filled in
during each iteration j > 0 (line 10). Then for each node
ID uId ∈ Nt, we get its sigk(uId), insert it to S in an I/O
efficient way, getting pIdk(uId) in return, and then placing
this value in the pIdnew nId column of Nt.

At line 10 of Algorithm 1, to fill in the pIdold tId column
of Et, we conduct a sort merge join of Et and Nt (since
both tables are sorted properly in iteration 1), replacing the
content of pIdold tId in Et with pIdold nId in Nt.

At line 15 of Algorithm 1, we sequentially construct the
signature sigk(uId) for each uId ∈ πnId(Nt) according to
Definition 3, and get the corresponding pIdk(uId) (using
S.insert()). All pIdk(uId) will be written back to the
pIdnew nId column of Nt (where nId=uId) right after, so that
there is no random access to Nt. Note that although by
definition sigk is a set, we construct sigk(uId) as a string,
maintaining elements of the set in sorted order. It is both
an easy way for storing a set and handy for implementing S
later on (e.g., using a trie).

3.2 Further discussion of Algorithm 1

Example run. If we assume the numbering scheme for S
is a self-increased counter across iterations, Table 1 would
be the intermediate results for running Algorithm 1 on the
example graph in Figure 1 (k = 2), and Table 2 gives the
final output of the algorithm.

Table 2: Output of Algorithm 1 on example graph in Figure 1
(k = 2)

(a) Nt
nId nLabel pId0 nId pIdold nId pIdnew nId

1 M A C G
2 M A C H
3 P B D I
4 P B E J
5 P B D I
6 P B F K

(b) Et
sId eLabel tId pIdold tId

3 l 1 C
1 w 2 C
2 w 2 C
5 l 2 C
4 l 3 D
1 l 4 E
2 l 6 F

Early stopping condition. It is not always necessary to
let the algorithm run k iterations. Indeed, it can be shown
(proof omitted) that after a bounded number of computation
iterations, Algorithm 1 would achieve the full (i.e., classical
non-localized) bisimulation partition. We could detect this
by simply checking the partition size each iteration produces.
If two consecutive iterations produce the same number of
partition blocks, this means that the algorithm already
achieves the full bisimulation partition, and therefore it is
safe to terminate the algorithm.

Data structures for S. The signature storage facility S
clearly plays an important role in Algorithm 1. In principle,
any data structure that permits an efficient set-equality
check will be sufficient. Trie and dictionary are such data
structures, for instance. During our experiments, we see
that in many of the cases, partition sizes are small and the
signatures are short, for which a main memory based data
structure is enough. In other cases, signature length could
reach several million and partition size into tens of millions,
then we need some external memory based solution for S.
We could, for example, sort all signatures from F in an
I/O efficient way [2], then when scanning these signatures,
partition identifiers are assigned. In this case, the overall
cost of the S.insert() operation could still be bounded by
O(sort(|Et|)). Other disk based solutions, such as disk-
based tries (e.g., String B-Tree [10] or [13]) or inverted files
(e.g., [22]) could also be considered.

In our experiments we use BerkeleyDB (B-Tree or Hash
index) to mimic a trie, which, as we show in the experimental
results, has acceptable empirical behavior.

Complexity and correctness. We have the following char-
acterization of Algorithm 1.

Theorem 1. Let k ≥ 0 and G = 〈N,E, λN , λE〉 be a
graph. Algorithm 1 computes the k-bisimulation partition of
G with I/O complexity of O(k · sort(|Et|) + k · scan(|Nt|) +
sort(|Nt|)), and space complexity of O(|Nt|+ |Et|).

Proof omitted.

Differences with Hellings et al. As indicated in Section
1, the only known solutions for computing bisimulation on
graphs in external memory are those of Hellings et al. [16],
with I/O complexity of O(sort(|Nt| + |Et|)). There are
two critical differences between their work and ours. (1)
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Targeting different problems. The solutions of Hellings et al.
are designed specifically for the special case of acyclic graphs.
Our approach does not rely on such structure, computing
bisimulation regardless of the presence or absence of cycles
in the graph. (2) Using different techniques. Hellings et al.
compute partition blocks level by level, starting from the leaf
nodes of the graph. Our approach constructs all partition
blocks at each iteration, using data structures and processing
strategies which are not tied to any (a)cyclic structure in the
graph. In particular, the techniques of Hellings et al. do not
generalize to graphs having cyclic structure.

4. MAINTENANCE OF K -BISIMULATION
PARTITIONS

It is easy to show that any edge and node updates on a
graph can potentially change the complete k-bisimulation
partition of the graph. Therefore, in the worst case,
the lower bound of such maintenance cost is the cost
of recomputing the k-bisimulation partition from scratch.
However, when dealing with real graphs, as we shall see
in Section 5, in many cases there is still hope to use data
structures such as S and priority queue to maintain the
correct partition result instead of recomputing everything.
In this section we propose several algorithms for this
purpose.

For maintenance algorithms we assume that we have
constructed the k-bisimulation partition of graph G =
〈N,E, λN , λE〉, where, as before, G’s Nt and Et are stored
on disk, containing the historical information kept in Nt
(Table 3); Et is the same as in Algorithm 1, but has two
copies with sort orders (sId,tId) and (tId,sId) to boost
performance. We use Etst and Etts to refer to each of these
copies.

Table 3: Nt for maintenance algorithms

nId nLabel pId0 nId pId1 nId . . . pIdk nId

We further assume that we save the signature storage
facility S on disk, which we use and update throughout the
maintenance process.

The maintenance problem includes the following subprob-
lems.

Change k. If k increases, we carry out another iteration
of computation. If k decreases, the result can be returned
directly since we keep the history information in Nt.

Add a set of new nodes (Add Nodes()). When adding a
set of new nodes, we assume the new nodes are isolated,
stored in the newNodes table, which has the same schema
as Nt, and that |newNodes| = O(|Nt|). We first sort Nt
and newNodes by nLabel, then perform a merge join on the
nLabel column to fill in the pId0 nId column of newNodes
for all the existing nLabel. For the missing ones, we request
a new pId for each of the new nLabel. Then we get the
pId1, . . . , pIdk of the newNodes by inserting its pId0 to S.
At the end we append the whole newNodes to Nt. The I/O
complexity of Add Nodes() is bounded by O(sort(|Nt|)).

Add a set of new edges (Add Edges()). For adding a
set of edges, we assume that the edges are added between
existing nodes. If this is not the case, we first call procedure
Add Nodes(). The new edges are stored in the newEdges
table, having the same schema as Et. For inserting one edge
(s, l, t) to G, the potential changes are to sigj(s) (1 ≤ j ≤ k),
as well as those signatures of all ancestors of s within k

steps. So the main work is to detect whether there is some
change in sigj(s) and propagate those change(s) to its parent
nodes’ signatures in later iterations. We use a priority queue
pQueue to record and process such changes in a systematic,
level-wise manner. For some node ID uId and iteration j,
pQueue stores the pair (j,uId) as priority reference. Then
whenever we dequeue one element from pQueue, we get the
smallest node ID from the lowest iteration (lowest priority
reference). Therefore pQueue indicates those nodes whose
signatures could change in each iteration level (from 1 up to
k).

At the beginning of the algorithm, we enqueue (j, s) to
pQueue (∀(s, l, t) ∈ Et, 0 < j ≤ k). Then, while pQueue is
not empty, we dequeue the list of (j, uId) pairs with the same
j out of the queue, construct the new signature of each such
uId, insert it to S, and compare the returning pId j(uId) with
the old pIdj nId value of uId. If the pId remains the same as
the old one, we continue; if it changes, we record pId j(uId)
in Nt, and enqueue all (j + 1, vId) pairs to pQueue where
vId ∈ πsId(σtId=uId(Et)). Pseudo code is given in Algorithm
2, and a detailed discussion is in Section 4.1.

Deletions. Deletions follow a similar idea to insertions. For
example, when removing an edge (s, l, t), it is the same idea
as adding one. We also (potentially) modify the signature
of s, propagating changes to its ancestors via pQueue, then
the reasoning is the same. When removing a node, we first
remove each incoming edge and each outgoing edge for that
node. Then we remove the node from Nt.

4.1 Details of Algorithm 2 (Add Edges())

Input and output. The input variables of Algorithm 2 are
node table Nt, edge tables Etst and Etts, the signature
storage facility S, the new edge set newEdges and k. The
output variables of Algorithm 2 are Nt, Etst, Etts and
S. Nt’s schema is given in Table 3, while Etst, Etts and
newEdges’s schema is the same as Et in Algorithm 1.

k = 0, line 2 to 3 of Algorithm 2. For k = 0, since all
nodes’ information is properly filled (including the pId0 nId

column in Nt), we only need to add new rows to Etst and
Etts according to newEdges.

k > 0, line 4 to 20 of Algorithm 2. For k > 0, for each
iteration, which is indicated by j in the algorithm, we need
to (1) find out the potential nodes whose signatures could
have changed; (2) check whether these signatures have been
changed or not; and, (3) propagate any such changes to the
parents of these nodes. To record the potential nodes and to
perform the propagation, we use a priority queue pQueue.
To check signature changes, we reuse the signature storage
facility S.

When adding a new edge (s, l, t) ∈ newEdges to the
graph, all sigj(s) (j > 0) have the potential to change,
and hence we add all pairs (j, s), for j ∈ {1, . . . , k}, to
pQueue, indicating that we need to check the signature of s
in every iteration (line 7 to 8). For each iteration j > 0, we
dequeue from pQueue all node IDs in the smallest iteration
j, remove duplicates, and save them to a temporary table
M, so that M contains in sorted order all node IDs whose
signatures would change in iteration j. Then we create an
extra table F, preparing for signature constructions. This is
achieved by performing a merge join of Etst and M (where
Etst.sId ∈ M ). Then we fill in F .pIdold tId column, as in
Algorithm 1.
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Algorithm 2 Add a set of new edges to existing k-bisimulation partition

1: procedure Add Edges(Nt, Etst, Etts, S, newEdges, k) . newEdges is a table of new edges
2: if k = 0 then
3: merge newEdges into Etst and Etts . O(sort(|Et|))
4: else . k > 0
5: Nt← sort(Nt) by nId . O(sort(|Nt|))
6: create empty priority queue pQueue . overall O(sort(|Nt|))
7: for j ∈ {1, . . . , k} and (s, l, t) ∈ newEdges do
8: enqueue (j, s) to pQueue

9: merge newEdges into Etst and Etts, fill in the pIdold tId column . O(sort(|Et|))
10: while pQueue is not empty do
11: dequeue all pairs (j, uId) from pQueue with the same (i.e., smallest) j value, save all distinct uId to M
12: F ← σsId∈M (Etst) . merge join, O(scan(|Nt|) + scan(|Et|))
13: fill in the pIdold tId column of F . O(scan(|Nt|) +O(sort(|Et|)) +O(scan(|Et|)))
14: H ← πα(F ), where α=(sId, eLabel, pIdold tId)
15: H ← sort H on sId, eLabel, pIdold tId , and remove duplicates . O(sort(|Et|))
16: for all uId ∈ M do . scan M, Nt and H, overall O(scan(|Nt|)) +O(scan(|Et|)) + cost of S
17: construct sigj(uId) from H
18: pId j(uId) ← S.insert(sigj(uId))
19: if pId j(uId) is not the same as the corresponding value in Nt.pIdj nId then
20: propagate changes to Nt and pQueue . O(scan(|Nt|)) +O(scan(|Et|))
21: return (Nt, Etst, Etts, S)

After projection on the (sId, eLabel, pIdold tId) of F and
removing duplicates, we get H (line 15), and are ready to
construct the signatures. For each uId ∈ M, we construct
sigj(uId) according to the signature definition. The idea of
constructing the nodes’ signatures is the same as line 15 of
Algorithm 1, only in this case we are not considering every
node but only those appearing in pQueue (and later in M ).

We then call S.insert(sigj(uId)) for all such uId . If
S returns the same pId j(uId) as recorded in Nt.pIdj nId ,
nothing will happen; otherwise we change the Nt.pIdj nId

entry of uId accordingly, and propagate the changes to
pQueue. If j < k, we add all parents of uId to pQueue
to indicate that we will check these nodes’ signatures in the
j + 1 iteration.

4.2 Further discussion of Algorithm 2

Example run. We present different behaviors of Algorithm
2 using two examples. Here we will extend the graph from
Figure 1 as in Figure 2. The dashed lines in this figure
indicate the two edges which we will add in our examples.
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Figure 2: Updates on the
example graph

First suppose we add
edge (2, l, 7) to the original
graph of Figure 1, where
node 7 is a new node with
label P. Table 4 shows
the resulting partition af-
ter this insertion. The
new/changed part of the
table is indicated in gray.
When the algorithm starts,
(1, 2) and (2, 2) are added

to pQueue. Then after checking each of these, the algorithm
finds no change in node 2’s signature, therefore no change
propagates, and the algorithm stops. We see that comparing
with Table 1, the only thing that changes is to add one
more row (node 7) to the table. Since node 7 does not have
outgoing edges, adding one edge that points into node 7 will
not change any existing nodes’s signature. Node 7 belongs
to the group of node 6, and no other node changes group
membership.

In the second case, suppose we add edge (6, l, 5) to the
original graph of Figure 1. The algorithm first add (1, 6) and

Table 4: 2-bisimulation for the example graph after edge insertion
(2, l, 7)

nId pId0(nId) sig1(nId) pId1(nId) sig2(nId) pId2(nId)
1 A A, {(w,A), (l, B)} C A, {(w,C), (l, E)} G
2 A A, {(w,A), (l, B)} C A, {(w,C), (l, F )} H
3 B B, {(l, A)} D B, {(l, C)} I
4 B B, {(l, B)} E B, {(l,D)} J
5 B B, {(l, A)} D B, {(l, C)} I
6 B B, {} F B, {} K
7 B B, {} F B, {} K

(2, 6) to pQueue. Then in iteration 1, the algorithm detects
that the signature of node 6 does change, and therefore
adds one new pair (2, 2) to pQueue. In iteration 2, both
node 2 and node 6’s signatures are checked, and they are
both changed. We see that in Table 5 pId2(1 ) and pId2(2 )
become the same, while pId2(6 ) changes from K to I.

Table 5: 2-bisimulation for the example graph after edge insertion
(6, l, 5)

nId pId0(nId) sig1(nId) pId1(nId) sig2(nId) pId2(nId)
1 A A, {(w,A), (l, B)} C A, {(w,C), (l, E)} G
2 A A, {(w,A), (l, B)} C A, {(w,C), (l, E)} G
3 B B, {(l, A)} D B, {(l, C)} I
4 B B, {(l, B)} E B, {(l,D)} J
5 B B, {(l, A)} D B, {(l, C)} I
6 B B, {(l, B)} E B, {(l,D)} J

Complexity and correctness. We have the following char-
acterization of Algorithm 2.

Theorem 2. Let G = 〈N,E, λN , λE〉 be a graph and
k ≥ 0. After adding a set of new edges to G, Algorithm
2 correctly updates the k-bisimulation partition of G with
I/O complexity of O(k · sort(|Et|)+k · sort(|Nt|)), and space
complexity of O(k · |Nt|+ k · |Et|).

Proof omitted.

When to switch back to Algorithm 1. As we will see in
our empirical study (Section 5.3.4), it is not always beneficial
to use Algorithm 2, since it performs extra work in each
iteration. Heuristics could be adopted to decide when to
switch back to Algorithm 1. For example, if at a certain
iteration, most of the nodes are placed into pQueue, it is
more beneficial to switch back to Algorithm 1. This could be
done by simply checking the size of pQueue at the beginning
of each iteration.
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5. EMPIRICAL ANALYSIS
In this section we present the results of an in-depth

experimental study of our algorithms. After introducing
our set-up, we show the performance of the algorithms on
both synthetic and real datasets. In these experiments,
various aspects of the algorithms are investigated while other
settings are fixed. A thorough analysis of the k-bisimulation
result itself can be found in paper [21].

5.1 Experiment setting

Environment. The following experiments are run on a
machine with 2.27 GHz Intel Xeon (L5520, 8192KB cache)
processor, 12GB main memory, running Fedora 14 (64-bit)
Linux. We use C++ to implement all the algorithms, using
GCC 4.4.4 as the compiler. We use the open-source STXXL
library [6] to construct the tables and perform the external
memory sorting, and use Berkeley DB to implement S. One
S is used for all computation iterations (as discussed in
Section 3.2). In the experiments we do not exploit any
parallelism and restrain ourselves with predefined buffer
sizes. We record the running time as well as the I/O volume
between the buffer and the disk system. Therefore, the
performance (time) of the experiments are comparable to
a commodity PC, and the I/O volume can be repeated on
other systems. In the following experiments, we set both the
STXXL buffer and Berkeley DB buffer to be 128MB, if not
otherwise indicated. Please note that we run experiments
for the Twitter dataset on a different machine (Intel Xeon
E5520, 2.27 GHz, 8192KB cache, 70G main memory, same
OS) for limited disk space reason, using a 512MB/512MB
buffer setting.

Datasets. To prove the practicability of the algorithms, we
experiment with various graph datasets. The datasets are
collected from public repositories, ranging from synthetic
data to real-world data, from several million of edges to
more than 1.4 billion edges. In Table 6 we give a description
of the datasets, as well as some simple statistics of them.
All datasets are accessed on 15 May 2012. Note that due to
space limitation, in the following we show the experiment
results on a subset of the datasets when the result is
representative enough.

Table 6: Description and statistics of the experiment datasets

Data Name Description Node Count Edge Count Label on

Jamendo A repository of music
metadata in RDF for-
mat1

486,320 1,049,647 Edge

LinkedMDB A repository of movie
metadata in RDF for-
mat [14]

2,330,695 6,147,996 Edge

DBLP An RDF format
DBLP dump2

23,000,670 50,203,406 Edge

WikiLinks A page-to-page
linking graph of
Wikipedia3

5,710,993 130,160,392 None

DBPedia An early RDF dump
of DBPedia4

38,615,135 115,305,444 Edge

Twitter A following relation-
ship graph of Twit-
ter [18]

41,652,230 1,468,365,182 None

SP2B A RDF data generator
for arbitrarily large
DBLP-like data [29]

280,908,393 500,000,912 Edge

BSBM A RDF data gener-
ator for e-commerce
use case [3]

8,886,078 34,872,182 Edge

1http://dbtune.org/jamendo/
2http://thedatahub.org/dataset/l3s-dblp
3http://haselgrove.id.au/wikipedia.htm
4http://www.cs.vu.nl/~pmika/swc/btc.html
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Figure 3: Experiment results for Algorithm 1 for real and
synthetic datasets for each iteration (k = 10)

5.2 Experiments on the k-bisimulation con-
struction algorithm (Build Bisim())

In Figure 3 we show the experiment results for Algorithm
1 on all datasets. We compute the 10-bisimulation (i.e.,
k = 10) of these datasets, and measure many aspects of
the running behavior for each iteration. Concerning time
measurement, we run every experiment 5 times and take
the average number. S uses BerkleyDB’s B-Tree index in
this experiment.

In Figure 3a, we show the number of partition blocks
every iteration produces for all datasets. We see that
the numbers vary from one dataset to another, where the
difference is sometimes more than an order of magnitude,
and interestingly, does not directly relate to the size of the
dataset. In certain cases (e.g., Twitter) partition size is
quite large. Moreover, many of the datasets (e.g., Jamendo,
LinkedMDB, DBLP, etc.) reach full bisimulation after 5
iterations. In fact, all datasets (including Twitter) get
sufficient partition result after 5 iterations of computation.
Here we can reasonably argue that even for Twitter dataset,
the partition results after 5 iterations are too refined (e.g.,
(partition count)/(node count) > 0.8).

Figure 3b shows the maximum length of signatures for
each iteration. We observe that the signature length is
usually quite short, especially comparing with the size of
the graph. But there are still cases (e.g., Twitter) that the
signature becomes very long (more than 1 million integers),
which stresses the need for an I/O efficient solution for S.
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Note that the synthetic datasets, such as BSBM and SP2B,
reach their full bisimulation partition after 3 iterations of
computations, and have rather short signatures, indicating
that they are highly structured.

Figures 3c and 3d show the I/O volume spent on sort-
ing/scanning (STXXL) and on interacting with S (Berkeley
DB). We see for most of the datasets, there is no dramatic
change cross different iterations. But for Wikilinks and
Twitter, the two datasets which have very few partition
blocks at the beginning and many at the end, there is a
noticeable difference on S for different iterations. In this
case I/O on S becomes a comparable factor with sort and
scan (I/O on STXXL).

Figure 3e shows the time spent on preparing the signature
(line 5 to 13 in Algorithm 1) for each iteration, which is
quite stable for all datasets. Figure 3f shows the time on
constructing the signature and insert into S (line 14 to 17 in
Algorithm 1). In this case datasets with higher degrees tend
to cost more time in later iterations, which correlate with
their longer signatures and larger number of partition blocks.
For all datasets, however, the operations on constructing
and looking for signature are the dominant factor for each
iteration. This brings us to think about further optimization
tasks on construction of signature and implementation of S.

We can conclude that the algorithm is practical to use. It
can process a graph with 100 million edges (e.g., WikiLinks
and DBPedia) in under 700 seconds for one iteration, and
performance scales (almost) linearly with the number of
nodes and edges.

5.2.1 Different implementations of S

As we mentioned in Section 3.2, S could be implemented
in several ways. we compare the overall I/O performance
of Build Bisim() using B-Tree and Hash indexes for S on
several datasets. We notice that the B-Tree implementation
slightly outperforms Hash Index for all datasets. This is
most likely due to small caching effects and locality of
references during construction of the signatures.

5.2.2 The effect of different buffer sizes
We allocate two buffers, one for scan and sort (STXXL

buffer in our case), one for S (BerkeleyDB buffer in our
case), in order to analyze the impact of buffer size on our
algorithms. To illustrate, we take the DBPedia dataset since
it is large enough to show buffer effects. For the sort/scan
setting, we set the buffer size ranging from 16MB to 512MB,
while keeping the S buffer to 128MB, recording the I/O
between the buffer and the disk system. From Figure 4a we
see that bigger buffer does improve the performance. But
since we only gain in the external memory sorting part, a
certain amount of I/Os is inevitable for each iteration. Note
that the reason why iteration 1 has higher I/O cost is that
in iteration 1 extra sorts on Nt and Et are performed.
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Figure 4: I/O for different buffer size setting for sort/scan and S
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For the setting on S, we set the buffer size ranging from
16MB to 512MB, while keeping the sort/scan buffer to be
128MB, recording the I/O of the buffer to the disk system.
From Figure 4b we also see that more buffer brings less I/O,
as expected. However, in this case the buffer size change
has a bigger impact on the I/O performance. This indicates
that if we have a certain amount of memory space, it is more
beneficial to allocate more memory to the S buffer than to
the sort/scan buffer. Note that S buffer also shows quite
high hit ratio during execution (more than 0.98 for DBPedia
in all settings).

5.2.3 Scalability
In order to measure how well the algorithm scales, we

generate different size of SP2B datasets (edge count 1M,
5M, 10M, 50M, 100M, 500M), and measure the I/O and
elapsed time for each dataset. In Figure 5 we see that the
time spent on each edge is on the order of 10−5 seconds,
and the I/O spent on each edge is under 4000 bytes (which
is one typical disk page size). The algorithm’s performance
scales (almost) linearly with the data size.
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Figure 5: Time and I/O spent on each edge on average (k = 10)

5.3 Experiments on the edge update algo-
rithm (Add Edges())

Edge updates are common operations for graph data. For
our datasets, adding one edge means to add a link between
two wiki pages (WikiLinks), to add more information to one
publication or author (DBLP), to follow one more person
(Twitter) and so on. Sometimes we would like to also add
several edges together at once. So in this subsection we
test the performance of Algorithm 2 (Add Edges()), first
adding a single edge and then adding a set of edges.

5.3.1 Observations on single edge update
To create the dataset for testing, we randomly take one

edge from the edge set, perform Build Bisim() on the rest
of the dataset, and apply Add Edges() on this edge. We
believe the edge selection is more natural this way, since it
take into account the distribution of edges among nodes.
We repeat the experiment 10 times and take the average of
the measured numbers. In Figure 6a we show how many
nodes are checked for adding one edge to the graph in each
iteration. In Figure 6b we show how many nodes actually
change their partition IDs in each iteration. From the figures
we see that the behavior varies for different datasets; graphs
that have larger degrees tend to propagate more changes to
later iterations, which complies with our intuition.

Since there is a chance that many nodes are changed but
they may all belong to a certain set of partitions, we also
examine how many partitions change their members in each
iteration. We see that the behavior is closely related to that
of Figure 6b.
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Figure 6: Experiment on Add Edges() when k = 10

5.3.2 Comparison of Build Bisim() and Add Edges()
(single edge update)

After edge insertion, if there is no update algorithm
available, the only choice to get the k-bisimulation partition
is to execute the Build Bisim() from scratch on the new
dataset. So this would be the baseline for the Add Edges()
algorithm to compare. In the following we compare the
overall I/O and time (Figure 7) of the two algorithms.
We see that indeed the Add Edges() algorithm always
achieves a better performance than using Build Bisim() to
recompute the k-bisimulation partition result from scratch,
with up to an order of magnitude improvement.
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Figure 7: I/O and time comparison for Build Bisim() and
Add Edges() after inserting one edge to the dataset (k = 10)

5.3.3 Comparison of Build Bisim() and Add Edges()
in extreme cases (single edge update)

From the above experiments, we see that the performance
of the algorithms are highly related to the datasets they
process. For some datasets, the update algorithm is very
much favorable while in other cases not so much. In the
following, we would like to gain a better understanding of
this phenomena.

We achieve this with two synthetic datasets, triggering
both the extreme cases where the construction algorithm
benefits the most and the update algorithm benefits the
most. The first dataset, Dbest, shows a best-case scenario
that the update algorithm can achieve relative to the
construction algorithm. In this case we create a full k-
ary tree, with edges pointing from parents to their children.
When adding one edge to the tree, we add one edge to the
leaf node, so that no node’s signature would change after the
insertion. In this case the update algorithm does the least
amount of work, without propagating any change to further
iterations during execution. Figure 8a shows an example of
Dbest, which is a binary tree with height 3. The dashed
edge is the newly added edge.
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Figure 8: Examples for Dbest (8a) and Dworst (8b) datasets

The second dataset, Dworst, exhibits a worst-case scenario
for the update algorithm, relative to construction. In this
case we create a complete graph, with edges all labeled with
x. Then when adding one more edge (labeled y) to one of
the nodes, every other node in each iteration is affected and
therefore all the nodes’ signatures are changed. The update
algorithm has to check all nodes in every iteration. Figure
8b shows an example of Dworst, a complete graph with 5
nodes. The dashed edge is the newly added edge.
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Figure 9: Time and I/O comparison for Db(est) and Dw(orst) by
applying Build Bisim() and Add Edges() algorithms on both
(k = 10)

We generate Dbest and Dworst on the scale of 100 million
edges, and measure the elapsed time and I/O costs (Figure
9) for both the construction (Build Bisim()) and edge
update (Add Edges()) algorithms in each iteration. We see
that indeed for Dbest, the update algorithm shows a 4 times
speed-up in time compared with the construction algorithm.
For Dworst, the update algorithm is 2 times slower in time
than the construction algorithm.

5.3.4 Experiment on multiple edges update
To test the performance of multiple edges update, we

randomly select a set of edges from the dataset (edge count
1, 10, 100, . . . , 1M), and apply the algorithm Add Edges()
upon them, recording the I/O and elapsed time perfor-
mances. In Figure 10, we show the I/O improvement
ratio and time speed up ratio (both construct/update)
for all cases (taking the average). A gray line is drawn
at y = 1 for both figures to split the space to indicate
whether Add Edges() performs better than Build Bisim()
or not. From the figure we see that for many of the
datasets, it is beneficial to do batch update (Add Edges())
up until 104 edges. An order of magnitude time speed up
is observed for Jamendo, LinkedMDB and DBLP. In fact,
if we consider the time cost for Jamendo and DBLP, it
is always favorable to use Add Edges() in all cases. For
dataset DBPedia, however, changes propagate rapidly in
the first few iterations, therefore the construction algorithm
(Build Bisim()) becomes a better choice when there are
more than ten edges to be updated.

6. CONCLUSION AND FUTURE WORK
In this paper we have presented, to our knowledge, the

first I/O efficient general-purpose algorithms for construct-
ing and maintaining k-bisimulation partitions on massive
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disk-resident graphs. A theoretical analysis showed, and an
extensive empirical study confirmed, that our algorithms are
not only efficient and practical to use, but also scale well with
the size of the data.

We close by listing a few promising research directions
for further study. First, it would be interesting to explore
adaptations and extensions of our algorithms for alternative
hardware platforms (e.g., multicore, SSD). Second, as we
indicated at various points, many alternative data structures
and join algorithms can be investigated for optimizing
various aspects of the proposed algorithms. Third, because
of their bulk streaming-based nature, many aspects of
our algorithms naturally lend themselves to state-of-the-
art parallel and distributed computing frameworks such
as MapReduce. Studying the possibilities for leveraging
our solutions to further scale the performance of these
frameworks on real world graphs is certainly an interesting
research direction. Last but not least, the ideas developed in
this paper provide a basis for investigating related problems
such as computing and maintaining simulation partitions in
external memory (e.g., [12]).
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