
Tree Logical Classes for Efficient Evaluation of XQuery

Stelios Paparizos∗

University of Michigan
spapariz@umich.edu

Yuqing Wu∗

University of Michigan
yuwu@umich.edu

Laks V. S. Lakshmanan†

University of British Columbia
laks@cs.ubc.ca

H. V. Jagadish∗

University of Michigan
jag@umich.edu

ABSTRACT
XML is widely praised for its flexibility in allowing repeated and
missing sub-elements. However, this flexibility makes it challeng-
ing to develop a bulk algebra, which typically manipulates sets of
objects with identical structure. A set of XML elements, say of
type book, may have members that vary greatly in structure, e.g.
in the number of author sub-elements. This kind of heterogene-
ity may permeate the entire document in a recursive fashion: e.g.,
different authors of the same or different book may in turn greatly
vary in structure. Even when the document conforms to a schema,
the flexible nature of schemas for XML still allows such signifi-
cant variations in structure among elements in a collection. Bulk
processing of such heterogeneous sets is problematic.

In this paper, we introduce the notion of logical classes (LC) of
pattern tree nodes, and generalize the notion of pattern tree match-
ing to handle node logical classes. This abstraction pays off signif-
icantly in allowing us to reason with an inherently heterogeneous
collection of elements in a uniform, homogeneous way. Based on
this, we define a Tree Logical Class(TLC) algebra that is capable of
handling the heterogeneity arising in XML query processing, while
avoiding redundant work. We present an algorithm to obtain a TLC
algebra expression from an XQuery statement (for a large fragment
of XQuery). We show how to implement the TLC algebra effi-
ciently, introducing the nest-join as an important physical operator
for XML query processing. We show that evaluation plans gener-
ated using the TLC algebra not only are simpler but also perform
better than those generated by competing approaches. TLC is the
algebra used in the TIMBER [8] system developed at the University
of Michigan.

1. INTRODUCTION
XML is in wide use today, in large part on account of its flex-

ibility in allowing repeated and missing sub-elements. However,
this flexibility makes it challenging to develop an XML manage-
ment system. In this paper, we follow the algebraic native XML
management approach and focus on tree algebras like [4, 9] over
node algebras [10, 18]. A bulk algebra normally requires manipu-

∗Supported in part by NSF under grant number IIS-0208852.
†Supported in part by grants from NSERC (Canada), NCE/IRIS,
and a fellowship from BC Advanced Systems Institute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 , June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

lation of sets of objects that are structurally homogeneous; but this
statement is in contrast with the nature of XML query processing.
Tree algebras in the past tried to solve this problem by flattening
everything and then having to do extra work (grouping, redundant
matches etc.) to produce the correct result.

In this paper, we introduce the notion of a tree logical class and
show that it is possible to define bulk operations on structurally het-
erogeneous sets of trees by inducing homogeneity through a tree
logical class reduction. With this as the basis, we define a Tree
Logical Class (TLC) algebra and demonstrate its utility in evalu-
ating XQuery. To describe better the problems that we solve, we
take a step back and begin with some background and a motivating
example.

1.1 Background
An XML database is often described as a forest of rooted node-

labeled trees. A query against such a database is often decomposed
into one or more XML query patterns (or twigs), each of which
is also represented as a rooted node-labeled tree. An edge in an
XML query pattern represents a structural inclusion relationship,
between the elements represented by the respective pattern tree
nodes. The inclusion relationship can be specified to be either im-
mediate (parent-child relationship) or of arbitrary depth (ancestor-
descendant relationship).

Given an XML database and a query pattern, the witness trees
(pattern tree matchings) of the query pattern against the database
are a forest such that each witness tree consists of a vector of data
nodes from the database, each matches to one pattern tree node
in the query pattern, and the relationships between the nodes in
the database satisfy the desired structural relationship specified by
the edges in the query pattern. The set of witness trees obtained
from a pattern tree match are all structurally identical. Thus, in
tree algebras [4, 9], a pattern tree match against a variegated input
can be used to generate a structurally homogeneous input to an
algebraic operator.

1.2 Motivation
Consider a query (against the XMark[13, 21] schema) that looks

for the bidders who are older than 25 and are bidding on auction
items that have been bidden by at least 5 bidders. For each such
bidder and each item he/she bids on, the name of the bidder and
the info of all the bidders who bid on the auction item are to be
returned. The query (in XQuery [2]) is shown in Figure 1. An al-
gebraic representation of this query is shown in Figure 2, using an
algebra similar to TAX[9]. Other algebras will produce plans simi-
lar in spirit. There are several concerns with the plan in Figure 2.

Structural Clustering. XQuery semantics frequently requires
that nodes be clustered based on the presence of specified structural
relationships. The RETURN clause in Q1 requires the complete

FOR $p IN document(“auction.xml”)//person
FOR $o IN document(“auction.xml”)//open auction
WHERE count($o/bidder) > 5 AND $p/age > 25

AND $p/@id = $o/bidder//@person
RETURN
<person name={$p/name/text()}> $o/bidder </person>

Figure 1: Example Query Q1

subtree rooted at each qualifying $o/bidder node. Similarly, the
count function in the WHERE clause of Q1 requires as input the
set of all bidders for each open auction.

A traditional pattern tree match returns a set of witness trees
satisfying the pattern, for example, two-node trees for each pair
of open auction and bidder. These witness trees must then be
grouped based on the parent (or root) node, the open auction ($o).
At this point, aggregate function count can be applied to determine
the number of bidders in each group. Further structural manipula-
tion may be required to reconstruct the original XML structure. It
would be nice if (relevant portions of) the original XML structure
could somehow be retained.

An alternative approach for finding structural relatives of a node
is to perform tree navigation. This approach could be very costly,
especially when the tree is deep and there are “//”s in the path ex-
pression. It also does not easily lend itself to bulk processing. We
will return to navigational techniques when we get to the exper-
imental evaluation part of this paper - until then, we will say no
more about this.

Redundant Accesses. In XQuery, it is not uncommon that the
same element tag name is used in multiple places. In query Q1,
$o/bidder is used in the value join predicate in the WHERE clause,
as the parameter to the aggregate function, and finally, as the root
of the subtrees to be returned. In Figure 2 a bidder node appears
multiple times in the pattern trees, at least one for each appearance
in the query. Each algebraic operator typically performs its own
pattern tree match, redoing the same selection on bidder time and
time again. This redundant pattern matching work is unavoidable
for operators that require a homogeneous set as their input.

Redundant Tree Matching. Intermediate results may lose track
of previous pattern matching information and can no longer iden-
tify data nodes that match to a specific pattern tree node in an earlier
operator. For instance, having identified person/@id matches in
the very first step at the bottom left of Figure 2, we have no clue in
subsequent steps whether any particular person node has an id at-
tribute. To determine this, the same person/@id sub tree is applied
in the input for the succeeding Projection and Selection operations.
This either imposes severe limits on our ability to apply rewriting
optimizations or leads to redundant tree matching procedures.

In summary, the repetitive pattern-tree match process is break-
ing up input trees into small pieces, which are then painstakingly
re-assembled through grouping and projection. Not only is this
non-intuitive, but it also must have a negative effect on perfor-
mance. Furthermore, successive operators often match very similar
patterns, repeating work unnecessarily. These problems only get
worse for complex queries, such as Query Q2, shown in Figure 3.

1.3 Our Contributions
In this paper we develop techniques for bulk manipulation of het-

erogeneous sets of trees. In particular, we extend the notion of the
pattern tree by annotating its edges, and generalizing the semantics
of the pattern tree match to produce heterogeneous sets of witness
trees. We introduce the concept of logical class for nodes in a tree,
and manipulate all members of a logical class in identical fashion.
We develop TLC, a new tree algebra that manipulates trees based

person

name

GroupBy open_auction

bidder

GroupBy

<person>Construct

@<name>

join_rootSelect

@id = @person

doc_root

person

@id Age > 25

Select
doc_root

bidder

Select

bidderCount > 5

open_auction

Project

open_auction

bidder

GroupBy

open_auction

bidder

@person

Select

person

@id

Project

person

@id

open_auction

bidder

@person

join_rootProject

person open_auction

person

name

open_auction

bidder

open_auction

grouping_basis

keep

join_root

person open_auction

Duplicate
Elimination

join_root

person open_auction

name

Select join_root

person open_auction

Select

bidder

join_root

person open_auction

Sort join_root

person open_auction

Sort

join_root

person open_auction

Merge

Figure 2: An Algebraic Plan of Example Query Q1. The eval-
uation is bottom up. For clarity, we have presented this as an
evaluation “plan”, and pictured the pattern tree used by each
operator, rather than writing out a complex formal expression.
Many details have been suppressed. The operators used are
borrowed from TAX, we define the TLC variants in section 2.3.

on logical class values. These central concepts are all introduced in
section 2.

We present an algorithm to obtain TLC algebra representations
for a large fragment of XQuery, in section 3. We introduce two
additional operators, present rewriting rules to make use of them,
and show how to avoid redundant data accesses and redundant pat-
tern matchings with the help of these operators, in section 4. In
section 5, we define new physical operators and show how to im-
plement them so that they can efficiently support TLC algebra.

In section 6, we show through extensive experimentation, us-
ing TIMBER [11], that TLC produces better evaluation plans than
TAX [9], the recently introduced GTP technique [4], and a simple
navigational approach. We show that query evaluation performance
can improve up to an order of magnitude, using our approach.

2. TLC ALGEBRA
The root of the problems in the examples we saw above lies in the

fact that XML data is heterogeneous due to missing and repeated

FOR $p IN document(“auction.xml”)//person
LET $a := FOR $o IN document(“auction.xml”)//open auction

WHERE count($o/bidder)>5
AND $p/@id = $o/bidder//@person

RETURN <myauction> {$o/bidder}
<myquan>{$o/quantity/text()}</myquan>

</myauction>
WHERE $p/age > 25

AND EVERY $i IN $a/myquan SATISFIES $i>2
RETURN
<person name={$p/name/text()}>{$a/bidder}</person>

Figure 3: Example Query Q2

sub-elements. Most algebraic operators require a means for iden-
tifying components of an individual datum (e.g. attribute names
or column positions when dealing with sets of tuples). How to
identify components of a tree, when a given set of trees may have
structural variation? Existing tree algebras use pattern tree match
as a basic building block: witness trees that result from matching
a given pattern tree must by definition all be homogeneous, with
structure identical to the pattern tree. Hence nodes in a witness tree
are easy to identify, and operators can reference these to evaluate
predicates and perform manipulations as required. This technique,
while elegant, has a significant limitation – it requires that witness
trees have the same size/structure as the pattern tree, and that each
matched pattern tree node must appear once and only once in each
witness tree.

To overcome this limitation we extend the notion of a pattern tree
by annotating edges to permit heterogeneous match results. Then
we introduce logical classes of nodes, tie these to annotated pattern
trees, and show how they enable us to access heterogeneous sets of
trees as if they were all homogeneous. We conclude this section
with a brief description of the operators in a TLC algebra defined
on this basis.

2.1 Annotated Pattern Trees

Definition 1. Given a pattern tree Q = (V, E) and an edge e =
(u, v) ∈ E, the matching specification (mSpece) associated with
e specifies how matches to v are to be obtained for each match of
u. The value of mSpece can be one of the following:

“-” : one and only one match of v is allowed for each match of u
in one witness tree.

“?” : zero or one match of v is allowed for each match of u in one
witness tree.

“+” : one or more matches of v are allowed for each match of u in
one witness tree.

“*” : zero or more matches of v are allowed for each match of u
in one witness tree.

We extend the pattern tree definition to include the concept of
matching specification.

Definition 2. An Annotated Pattern Tree (APT) is a tree Q =
(V, E) where:

• Associated with each v ∈ V is Pv , which specifies the pred-
icate for individual node match.

• Associated with each edge e ∈ E (e = (u, v)), is a Rele
which specifies the desired structural relationship between
u and v (the value of Rele can be either parent-child or
ancestor-descendant), and mSpece, the matching specifica-
tion.

The definition of pattern tree match is extended accordingly:

Definition 3. Given a rooted node-labeled tree T = (VT , ET)
representing an XML database and an annotated pattern tree Q =
(VQ, EQ), a match of the annotated pattern tree Q on database T
is a one-to-many mapping h such that:

• h maps the root of Q to a singleton set.
• For each pattern tree node u ∈ VQ, ∀x ∈ h(u): Pu(x).
• For each pattern tree edge e = (u, v) ∈ EQ:

– ∀y ∈ h(v) ∃x ∈ h(u) : Rele(x, y)

– [if(mSpece =“-” ∨ mSpece =“+”) then ∀x ∈ h(u)
∃y ∈ h(v) : Rele(x, y)].

– [if(mSpece =“-” ∨ mSpece =“?”) then ∀x ∈ h(u),
∀y, z ∈ h(v) : [if Rele(x, y) and Rele(x, z) then y =
z]].

– [if(mSpece =“?” ∨ mSpece = “*”) and (∃y ∈ T :
Pv(y) ∧ Rele(x, y)) then h(v) is non-empty].

– [if(mSpece =“*” ∨ mSpece =“+”) then ∀y ∈ T :
(if Pv(y) ∧ Rele(x, y)) then y ∈ h(v))].

“-” is the default matching specification for all edges in the con-
cept of traditional pattern match. The introduction of matching
specification lifts the restriction of the one-to-one relationship be-
tween a pattern node and a witness tree node and gives us the free-
dom to generate heterogeneous sets of witness trees for a given
annotated pattern tree. Figure 4 shows the example match for an
annotated pattern tree. The figure illustrates how annotated pattern
trees address heterogeneity on both dimensions (height and width)
using variations of annotated edges. So A1, A2 and E2, E3 are
matched into clustered siblings due to the “+” edges in the APT.
On the flip side D1, D2 matchings will produce two witness trees
for the first input tree (the second tree is let through, although there
is no D matching) due to the “?” edge in the APT. Each match
h : Q → T induces a witness tree that we denote h(Q).

Generalized tree patterns (GTP [4]) and APT both extend the
classical notion of tree pattern queries. APTs permit quantified
matches via matching specifications, which allow only one or all
relatives of a given node to be grouped into one match, an ability
that GTPs lack. On the other hand, GTPs allow explicit (existential
or universal) quantifiers to qualify matches within the tree specifi-
cation itself. In the TLC algebra, a subsequent Filter operator can
be applied to the result of an APT tree match to obtain the effect
of a wide range of quantifiers in the form of aggregation selection
predicates. Figure 8, operator box Filter 10 shows how to do this
for universal quantification.

2.2 Logical Classes
Once the pattern tree match has occurred we must have a logical

method to access the matched nodes without having to reapply a
pattern tree matching or navigate to them. A simple variable bind-
ing for every node can do the trick but it is not possible in general;
an Annotated Pattern Tree match will generate heterogeneous sets
of witness trees. We now have the hard task of identifying which
node in each tree we are interested in for the next operation. For
example, if we would like to evaluate a predicate on (some attribute
of) the “A” node in Figure 4, how can we say precisely which node
we mean? For this purpose we introduce the notion of a Logical
Class that corresponds to a set of nodes in a tree.

Definition 4. Given a witness tree h(Q) produced by the match-
ing of an annotated pattern tree Q in some database; a Logical
Class (LC) of nodes matching v is defined as LC(v) = {h(v) :
h(v) ∈ Vh(Q)}. The logical class reduction of a witness tree h(Q)

D C

B

Annotated

Pattern Tree
(b)

?

A

E

+

+

(a)

A1

E1

A2

B
1

C
1

D
1

D
2

A
3

B
2

C
3

E3 C2

Input Trees

E2

Matching Witness Trees(c)

A
1

E
1

A
2

B1
C 1

D1

A
1

E
1

A
2

B1
C 1

D
2

A
3

B
2

C
3E3E2

Figure 4: A sample match for an Annotated Pattern Tree. Any
edge without an explicit annotation implies the default “-”. The
double-edged lines represent an ancestor - descendant rela-
tionship. Note how the APT addresses heterogeneity on both
dimensions (height and width) using variations of annotated
edges.

is a tree LCR(h(Q)) = (V, E) isomorphic to the pattern tree Q,
defined as follows: (i) Its nodes are logical classes – V = {h(v) |
v is a node in Q}; and (ii) it has an edge (h(u), h(v)) exactly when
the edge (u, v) is present in Q.

Basically, each node in an annotated pattern tree is mapped to a
set of matching nodes in each resulting witness tree. Each such set
of nodes is called a logical class. For example in Figure 4, the E
nodes form a logical class for each witness tree. For easy access,
we assign a label to each such logical class of nodes. We call this
label a Logical Class Label (LCL). The LCL is a unique number
associated with each tree. (i.e. a single tree cannot have two LCLs
with the same value, e.g. (2), pointing to different LCs). Thus,
every node in every tree in any intermediate result is marked as
member of at least one logical class. Of course, base data, read
directly from the database, has no such logical class association.

Note that the logical class reduction is a tree isomorphic to the
pattern tree. Even if there is optionality (via “?” and “*”) in the pat-
tern tree, every node will be mapped by h to some (possibly empty)
set of nodes. Thus, even though witness trees resulting from pattern
matches can be quite heterogeneous, their logical class reduction is
homogeneous.

We permit predicates on logical class membership as part of an
annotated pattern tree specification. This mechanism permits oper-
ators late in the plan to reuse pattern tree matches computed earlier.
For example, the pattern tree in step 9 of Figure 7 defines a logi-
cal class 13 of nodes that have tag name bidder and are immediate
children of nodes in the input intermediate result that have been
marked as belonging to logical class 5 (which, in this particular
query plan, is generated in step 2).

2.3 Algebraic Operators
Every operator in our algebra maps one or more sets of trees1

to one set of trees. The trees in a set may be heterogeneous. The
introduction of LC enables the operators in our algebra to refer to
particular nodes in trees; essentially accessing them as logical class
reduction trees. When no logical class information exists in a tree
(e.g. base data), we assume the class maps to the empty set.

Since a logical class points to a set of nodes in each tree, opera-
tors have to deal with sets of elements identified. Some operators

1The input can be a single tree database.

can use sets of arbitrary length, while others require that the logi-
cal class comprise a singleton set of nodes in each tree, else they
generate an error. We discuss this requirement in each operator’s
description.

Once the above concepts are in place, the details of the operators
are straightforward. We present a brief summary of a few popu-
lar operators below – most of these are loosely modeled after the
operators in TAX [9]:

Filter F [LCLf , p, m](S) : Given an input set of trees S, a filter
predicate p, a mode m and a label to a logical class LCLf : output
only the trees in S that satisfy the predicate p for the nodes bound
to LCf . The mode m parameter is used to identify how to iterate
over the set of nodes bound to LCf . The default for m is universal
quantification (Every (E))2 – any predicate evaluated must be true
for all nodes in the class, and the result of any manipulations will
output all nodes in the class. Existential quantification is covered
using at least one (ALO) node in the class. Another possibility
is for a predicate to be satisfied at exactly one (EX) node in the
logical class (although the class maps to multiple nodes). Other
interpretations are also possible, e.g. apply to first element (on the
basis of input data node ordering) in the logical class, etc.

Join J [apt, p](Sl, Sr) : The operator accepts two input sets of
trees Sl and Sr , an Annotated Pattern Tree apt and a predicate p. p
uses labels for LCs to describe nodes from trees in Sl and Sr along
with their desired content relationship. Each LC that participates
in p must map to a singleton set for each input tree. The input
apt describes how to generate the result structure using an artificial
node and the roots of the logical class reduction for the input trees
in Sl and Sr . The edge annotation is always ”-” for the left side
and can be any of the four mSpec options on the right side. The
operator uses the predicate information p to identify matching trees
in Sl and Sr and stitches together one input tree in Sl with one or
more matching input trees in Sr (according to the right side edge
annotation in the apt) .

SelectS[apt](S) : Select accepts as input a set of trees S and
an Annotated Pattern Tree apt. For each tree in the input set S the
operator performs a pattern tree match using apt. The output is the
entire set of the matching witness trees for all input trees.

Project P [nl](S) : The operator accepts as input a set of trees
S and a list nl using LC labels to identify sets of nodes (note that
the LCs point to arbitrary length sets, including the empty set). For
each input tree in S, only the nodes identified by nl are retained
in the output; if the output is not a tree, the input tree root is also
retained.

Duplicate-Elimination DE[nl, ci](S) : Eliminates duplicates
of the input set of trees S based on the list of specified nodes nl.
nl uses LC labels to identify nodes; each LC in nl must map to
a singleton set of nodes. The parameter ci specifies whether to
eliminate duplicates based on node content or identifier.

Aggregate-FunctionAF [fname, LCLa, newLCL](S) : The
operator accepts one input set of trees S, the aggregate function
name fname (count, max etc.), an LC label LCLa to describe
which nodes to apply the function on and an LC label newLCL for
the new node that will be created to hold the result. The function
fname is applied on each input tree of S for all nodes mapped
to LCa. LCa maps to a set of nodes with arbitrary length. Each
input tree generates one output tree with the result node added as a
sibling of the nodes specified by LCa; newLCL is the LC label of
the new node. Please note that if LCa maps to the empty set, then
the generated node will contain 0 for count and the flag “empty”
for all other functions.

2Please note that the semantics for Every (E) will let the input tree
pass if LCf maps to the empty set.

<FLWOR> ::= <ForLetClause> <WhereClause>? <ORetClause>
<ForLetClause> ::= (<ForClause>|<LetCLause>)+
<ForClause> ::= ‘FOR’ $var ‘IN’ <SP> | <FLWOR>
<LetClause> ::= ’LET’ $var ‘:=’ <SP> | <FLWOR>
<SP> ::= Simple Path with no branching predicates
<WhereClause> ::= ’WHERE’ <WhereExpr>
<WhereExpr> ::= <SimplePredicateExpr> | <AggrPredExpr>
| <ValueJoin> | <QuantifierExpr> | <ANDExp> | <ORExp>
<SimplePredicateExpr> ::= <SP> <Predicate> <Value>
<Predicate> ::= ’=’, ’>’, ’<’, . . .
<Value> ::= string or number
<AggrPredExpr> ::= <Aggr(<SP>)> <Predicate> <Value>
<Aggr(<SP>)> ::= ‘count(’<SP>‘)’ | ‘avg(’<SP>‘)’ . . .
<ValueJoin> ::= <SP> <Predicate> <SP>
<QuantifierExpr> ::= ’EVERY’ | ’SOME’ $var ‘IN’ <SP>
‘SATISFIES’ <SimplePredicateExpr>
<ANDExp> ::= <WhereExpr> ‘AND’ <WhereExpr>
<ORExp> ::= <WhereExpr> ‘OR’ <WhereExpr>
<ORetClause> ::= <OrderClause>? <ReturnClause>
<OrderClause> ::= ‘ORDER BY’ <SP>1, ..., <SP>n <Mode>
<Mode> ::= ‘Ascending’ | ‘Descending’
<ReturnClause> ::= ‘RETURN’ <ReturnExpr>
<ReturnExpr> ::= <SP> | <FLWOR> | <Aggr(<SP>)>
| (‘<’tag (tag ‘=’ <SP>)*‘>’ <ReturnExpr> ‘</’tag‘>’)

Figure 5: Grammar for XQuery Fragment.

Construct C[c](S) : The construct operator takes a collection
of trees S and an annotated construct-pattern tree c as input. An
annotated construct-pattern tree is an annotated pattern tree(APT),
except it allows facilities for tagging, renaming, and arbitrary tree
assembly. Figure 7 shows an example in box Construct 10. It spec-
ifies that each output tree should have a root with tag person with
an attribute name, with value specified by a reference to class (12),
and a child element created from the reference to class (13). In our
experience, we have found construct to be a low cost operator with
few opportunities for optimization through bulk processing.

3. XQUERY TO TLC EXPRESSIONS
Figure 5 shows a simplified, yet substantially expressive, frag-

ment of XQuery that can be translated to a TLC algebra expression.
In this section we present the sketch of an algorithm that performs
this translation.

To remove complexity of the presented algorithm we simplify
the supported path expressions. In XQuery, an XPath expression
with branching predicate can always be replaced by a simple XPath
expression in the context of a FLWOR query. Hence we operate
on XPath expressions without branching predicates, we call such
a structure a Simple Path (SP). For example, the XPath expression
/bidder/name is a SP, but the XPath expression /bidder[age>25]
/name is not.

Pseudocode for the algorithm is shown in Figure 6. Here we
will try to convey the intuition behind the algorithm, using as an
example the generation of the TLC algebra tree of Figure 7 for
Query Q1.

We begin by parsing the two FOR Clauses; they will create two
Selects and a Cartesian-Product of the selection results, correspond-
ing to boxes 1,2 and 5 respectively in Figure 7. Select 1 only
has doc root//person, Select 2 only doc root//open auction and
Join 5 has no join condition at this stage: the rest of the information
shown in the figure will be added by succeeding steps.

The simple predicate expression case is used to add age>25
node with LCL=10 in Select 1 in Figure 7, and the aggregate pred-
icate expression rule creates the bidder node with LCL=6 in Select
2 and adds the operators Aggregate 3 and Filter 4.

The value join case will first process the necessary path expres-
sions, adding the @id node with LCL=7 in Select 1, the bidder//
@person path with LCLs 8 and 9 in Select 2. Then it will up-
date the join specification in Join 5 to include (7) = (9) (@id =
@person).

Algorithm TLC
Input: a FLWOR expression Output: a TLC algebra plan
Globals LCLCounter VARIABLES OPERATORS PATTERNTREES

procedure SingleBlock(in FLWOR) {
Parse FLWOR, create Reductions for each Grammar Rule
For each Reduction do {
// Processing FOR - LET
Case ForClause ::= FOR $var IN SP

Set mSpec = ”-”
aptO = SPtoAPT(SP, mSpec)
add $var to VARS, point to aptO.leafnode
if (aptO.root is document())

If empty(OPERATORS) add Select[aptO]
else if exists(Select[aptA])

new Join[Cartesian](Select[aptA], Select[aptO])
else if (aptO.root is $varA)

addToAPT($varA, aptO, mSpec)
Case LetClause ::= LET $var := SP

Set mSpec = ”*”
Same with FOR and omitted due to space restrictions

// Processing WHERE
Case SimplePredicateExpr ::= SP Predicate Value

aptS = SPtoAPT(SP, ”-”)
aptS.leafnode.add(Predicate(Value))
if (aptS.root == $var1) addToAPT($var1, aptS, ”-”)

Case AggrPredExpr ::= Aggr(SP) Predicate Value
aptS = SPtoAPT(SP, ”*”)
LCLF = aptS.leafnode, newLCL = LCLCounter++
if (aptS.root == $var1) addToAPT($var1, aptS, ”*”)
new AggregateFunction AF[Aggr, LCLF, newLCL]
new Filter F[newLCL, Predicate(Value), ALO]
find Select SV that uses aptV ,

set F.setChild(AF) and SV.parent.setChild(F) and SV.setParent(AF)
Case ValueJoin ::= SPL Predicate SPR

aptL = SPtoAPT(SPL,”-”), aptR = SPtoAPT(SPR,”-”)
LCLJL = aptL.leafNode, LCLJR = aptR.leafNode
addToAPT(aptL.root, aptL, ”-”), addToAPT(aptR.root, aptR, ”-”)
Find join ancestor, add(Predicate(LCLJL, LCLJR))

Case Every ::= ‘EVERY’ $var ‘IN’ SP ‘SATISFIES’ SimplePredExpr
aptS = SPtoAPT(SP, ”*”)
addToAPT(aptS.root, aptS, ”*”)
add $var to VARS point to aptS.leafnode
Process SimplePredExpr, merge with aptS but use ”-” edges
Create Filter operator from SimplePredExpr, use EVERY mode

Case Some ::= ‘SOME’ $var ‘IN’ SP ‘SATISFIES’ SimplePredExpr
Same with EVERY details omitted, only final Filter uses ALO mode

Case ANDExp ::= WhereExpr ‘AND’ WhereExpr
Process left and right input merging the edges

Case ORExp ::= WhereExpr ‘OR’ WhereExpr
OR is translated to UNION of the operators produced both sides
Make sure the root node for each path on both sides is assigned
the same LCL, even if the tagname is different.

// Processing ORDERBY-RETURN
Case OrderClause ::= ORDER BY SP1, . . . , SPn Mode

for all SPi create aptSi = SPtoAPT(SPi, ”-”)
for all aptSi Create a Select S[aptSi], add to OPERATORS
Create Sort[LCL1, . . . , LCLn, Mode], add to OPERATORS

Case ReturnClause ::= RETURN ReturnExpr
Create Project: Keep all bound variables including root if there was a join
Create NodeIDDE, only on FOR variables
Parse RE, Create a tree with tags, SP and Aggregates
Convert each SP to APT, create a Select for that APT

Replace SP with the LCL referencing the leaf node in APT
Similarly replace Aggregates(SP), but also add Aggregate[] after Select
add Construct[parse tree] to OPERATORS

}}

APT function SPtoAPT(SP, mSpec)
Return an APT from the SP, use Rel from StepAxis, use mSpec for all edges

function addToAPT(VAR, APT, mSpec)
From VAR retrieve Pattern Tree P and LCL info

add APT to P as child of LCL using mSpec

procedure NestedQuery(in FLWOR)
Process FLWOR, if (Nested) then Call SingleBlock for ”inner” and ”outer”
Add a join between the outer and inner plan

Use edge ”-” for FOR, edge ”*” for LET and RETURN
Modify plans, join values should pass projects used.
Also, if inner construct elements are referenced in the
outer clause then they should survive the outer projection.

Figure 6: Algorithm TLC

Aggregate (count, (6), newLCL=11)

Filter : (11) > 5

Project : Keep (1), (3), (5)

NodeIDDE on : (3), (5)

*

*

*

Select

LCL=9 2

LCL=8
LCL=6

LCL=5

LCL=4

@person

bidder

open_auction

doc_root

bidder

3

4LCL=2doc_root

LCL=3
person

LCL=7 LCL=10
age>25@id

Select

1

Join
(7) = (9)

(2) (4)

join_root LCL=1

5

name LCL=12

(3)

6

7

Select

(5)Select

LCL=13bidder

8

9

LCL=14

(13)@<name>

<person>

LCL=15

Construct

10(12).text()

Figure 7: Algebraic Tree for Query Q1. Order of evaluation is
bottom-up. Each box represents an operator. Each APT edge
has the matching specification marked next to it, except for the
default “-” which is omitted for clarity. (ad) relationships use
double edges. The LCLs assigned to each class are shown next
to the corresponding APT node.

The next several cases in the algorithm do not apply to Q1 (ex-
cept for the trivial ANDExp case, which was already implicitly
folded into our discussion above). We now reach the RETURN
clause: at this stage all bound variables are known and all selec-
tion predicates have been applied. Before we start processing the
RETURN we generate the Project 6 operator having as parameters
the LCLs for the bound variables (LCL=3, LCL=5 in Figure 7) and
the root of the input tree if a join was applied (LCL=1). Following
the projection we add a node id3 duplicate elimination NodeIDDE
7 operator on node ids for only FOR (not LET) bound variables
(LCL=3, LCL=5 in Figure 7). Finally, we process the RETURN
arguments, adding operators Select 8, Select 9 and Construct 10.
Note how the selections use pattern tree extensions. Also note how
the construct tree is similar to a modified parse tree having substi-
tuted the SP in the RETURN clause with LCL references.

Nested FLWOR. We show the full TLC algebra plan for the
nested FLWOR query Q2 in Figure 8. Operators 1 and 9-14 are
obtained from the outer query in the same manner as Q1. There
are no surprises here. Notice how easily universal quantification is
handled in Filter 10, processing the Every case. Operators 2-8, in
the right sub-tree, correspond to the nested (inner) query. Again,
most of this is just as before, except that the join condition in the
where clause involves a variable bound in the outer query and so is
deferred until Join 9. In consequence, it becomes necessary to make
sure that the nodes referenced for the join will survive the project,
construct etc. in operators 5-8. Notice how LCL=9 is added to the
projection list in Project 5 and the construct pattern in Construct 8,
so that it can participate in Join 9. Also since the outer construct
references elements of the inner construct they should also be added
to the outer projection. Hence (12) is added to Project 11 so that it
can be referenced in the final construct.

3This is a very cheap operation, all identifiers are already in mem-
ory.

Project : Keep (1), (3), (14), (12)

NodeIDDE on : (3)

* *

Project : Keep (5), (9)

NodeIDDE on : (5)

Filter : EVERY (15) > 2

Aggregate (count, (6), newLCL=11)

Filter : (11) > 5

*

Select

LCL=9

2

LCL=8LCL=6

LCL=5

LCL=4

@person

bidder

open_auction

doc_root

bidder

3

4

5

6

bidder quantity

LCL=12 LCL=13

(5)Select

7

(12) (9)

<myauction>

<myquan>

LCL=15

LCL=14

(13).text()

Construct

8

LCL=2doc_root

LCL=3
person

LCL=7 LCL=10
age>25@id

Select

1

*

Join
(7) = (9)

(2) (14)

join_root LCL=1

9

name LCL=16

(3)Select

13

LCL=17

(12)@<name>

<person>

LCL=18

Construct

14(16).text()

*

10

11

12

Figure 8: Algebraic Tree for nested Query Q2.

4. ELIMINATING REDUNDANCY
Redundant access and redundant tree matching are drawbacks

of traditional tree algebraic representation of XML queries, as we
pointed out in Sec. 1.2. The TLC algorithm uses the LC concept
to enable pattern tree reuse. In this section we also show how to
further improve performance by introducing three new operators
(Flatten and Shadow / Illuminate) and the corresponding rewrite
rules.

4.1 Pattern Tree Reuse
Given a heterogeneous set of trees, we use pattern tree matches

to identify nodes of interest. In an algebraic expression, it is fre-
quently the case that multiple operators use exactly the same pat-
tern tree. It is computationally profligate to re-evaluate the pattern
tree matching multiple times, once for each such operator. Instead,
we permit the results of a pattern tree evaluation (including the
logical class mappings) to persist, and be shared by many of the
subsequent operators. Pattern tree reuse is akin to common sub-
expression elimination. Sometimes, subsequent operators may not
use the exact same pattern tree, but rather may use a variation of
it. In TLC we can apply additional conditions to the witness trees
known to satisfy the original pattern tree match, as well as extend
each tree to include new branches. We refer to already matched
nodes via the usage of LC labels. For example Selections 8 and 9
in Figure 7 use extended pattern trees.

4.2 Flattening
Often nodes with the same tag name in an annotated pattern tree

are marked with different predicates and annotated edges. This is

because such nodes appear in multiple places in the query. For
example, in the plan for Query Q1 as shown in Figure 7, Selection
2 has two occurrences of bidder in its associated pattern tree. The
bidder node with LCL=6 is required for the aggregate function
in step 3; the one with LCL=8 is needed, through its descendant
person node, for the value join in step 5. This pattern tree will
lead to the query evaluator physically accessing each bidder node
twice. Reusing the already accessed bidder information is our goal.

The problem is that the two bidder nodes in the annotated pat-
tern tree, while both children of the same open auction node,
have different annotations on their parent edges (“*” versus “−”).
One annotation generates witness trees where all bidder children
of each open auction are retained in a single tree, whereas the
other annotation requires a separate witness tree for each bidder,
open auction pair. It is frequently the case that we require the first
sort of output because of an aggregate (or some other set) computa-
tion. In that case, it may be appropriate to evaluate only the former,
compute the required aggregates, and then break the trees apart to
produce the structure required by the latter, without accessing the
database twice for this purpose. We introduce the Flatten operator
to perform this “breaking apart”.

Definition 5. Flatten: FL[LCLP , LCLC](S) takes as input a
set of trees S and a pair of LC labels LCLP , LCLC pointing to
P, C. Class P must bind to a singleton set for each tree and C must
map to a set of children of P in each tree. The output sequence of
trees is generated in the following way: For every tree T in S { for
every node p bound to P and c bound to C in T, produce an output
tree T ′ that is identical to T except we retain only c and drop all
other elements in C including their descendant subtrees}.

Flatten operator removes the nested part P-C for each input tree
and generates trees in which the matchings to P and C are singleton
sets. Figure 9 shows an example of the operator. The input tree Fig-
ure 9.a is transformed into two trees in Figure 9.b by FL[B, E](a),
then into four trees in Figure 9.c by FL[B, A](b).

FL[B, E](a)(b)

B1

E1
A1 A2

B1

E2 A1 A2

FL[B, A](b)(c)

B1

E1 A1
A2 E2 E2 A2

Nested Tree(a)

E1
A1E2 A2

B1 B1 B1

E1 A1

B1

Figure 9: Flatten Operator

Flatten Rewrite Rule.
PHASE 1: (Detect if FL rewrite can be used). Find a Selection

S[aptA]() such that A, B, C are three LCs in the APT aptA, and
tree(B), tree(C) are the subtrees rooted at B, C in aptA. For the
rewrite to be applicable the following conditions must all be satis-
fied: (i) {[(A, B) ∈ EaptA]∧ [(A, C) ∈ EaptA]∧ [mSpec(A, B)
= (+ or ∗)]∧ [mSpec(A, C) = (− or ?)]∧ [tree(B) ⊆ tree(C)]}
= TRUE, (ii) Let use[tree(B)] be some arbitrary operator using B
and notuse[tree(B)] mean that no other operator accesses B af-
ter that step. Check if the operator tree is (1): notuse[tree(B)](
use[tree(C)](use[tree(B)](S[aptA](. . .)))).

PHASE 2: (Perform the rewrite). Let aptB = aptA - tree(C)
and aptD1, . . . , aptDn = tree(C) - tree(B) (forest). The op-
erator tree (1) now becomes (2): use[tree(B)](S[aptD1], . . .,
S[aptDn](FL[A, B](use[tree(B)](S[aptB](. . .))))).

Figure 10 shows the result of the Flatten rewrite for Example
Query Q1, the nodes that qualify for the rewrite are LCL=5 is A,
LCL=6 is B and LCL=8 is C in Selection 2. To save space, we
show only the affected part of the rewritten TLC plan. This ex-
ample is indicative of the rewrite rule used. Using this rewrite we
have avoided going to the database twice and performing two pat-
tern matches to access the same bidder node.

Selection

LCL=9@person

(6)

Select

2LCL=6

LCL=5

LCL=4

bidder

open_auction

doc_root

Aggregate (count, (6), newLCL=11)

Filter : (11) > 5

3

4

Flatten (5, 6) 2a

2b

*

Aggregate (count, (6), newLCL=11)

Filter : (11) > 5

*

Select

LCL=9

2

LCL=8
LCL=6

LCL=5

LCL=4

@person

bidder

open_auction

doc_root

bidder

3

4

(a) Original Query (b) Query after Flatten rewrite

Figure 10: Flatten Rewrite for Query Q1. Please note how Se-
lection 2 from the original plan has been replaced by Selection
2 with a sub-tree of the original pattern tree containing only the
path with “*”. Flatten 2a has been added after the aggregate
has used the bidder nodes. Then selection 2b extends the bid-
der elements with person. The right block substitutes the left
block eliminating redundant tree matches.

4.3 Shadow/Illuminate
When redundant nodes (branches) are to be eliminated from APT,

a certain ordering is required between the references to the redun-
dant nodes in order to perform flatten rewrite. In the example
above, The aggregate function has to be calculated before the join
operations is performed. But the opposite scenario is quite com-
mon; suppose we want (or need) to perform some filtering or join
operation first and then reconstruct the nested elements. For query
Q1, we have a join that uses the bidder path and then require the
bidder elements to be clustered together for the result. Currently
we would have to do redundant matches to get the bidder elements
as seen in Figure 7. In this scenario, the flatten operator could not
be used to our advantage. Furthermore, it is not enough to define
an operator that is the inverse of flatten and can stitch together mul-
tiple intermediate result trees. The reason is that we may wish to
include all bidder children of selected open auction nodes in the
result, and not just the bidder children that successfully partici-
pated in satisfying some predicate (the join for Q1). To deal with
this situation, we introduce the concept of a shadowed node, along
with two new operators, Shadow and Illuminate. A shadowed node
remains a member of its logical class, but is not visible to any oper-
ator other than illuminate. In effect, shadowing provides us with a
logical means to retain nodes in an intermediate result tree but have
them not participating in any operation.

Definition 6. ShadowSH[P, C](S): takes as input a set of trees
S and a pair of LC labels (P, C). P must bind to a singleton set for
each tree and C must map to a set of children of P in each tree. The
output sequence of trees is generated in the following way: For ev-
ery tree T in S { for every pair of nodes p bound to P and c bound
to C in T, produce an output tree T ′ identical to T except all nodes
in C except c, including their subtrees, are marked shadowed}.

Shadow behaves similarly to Flatten with the extra caching fea-
ture of retaining shadowed nodes. The difference between the two
can be seen in Figure 11. But simply shadowing the nodes does not
help us; we must have a way to access them again when we need
to. We use the Illuminate operator for this purpose.

Input tree(a)

A1

B1

A2 A3 A1 A2 A3

FL[B, A](a)(b)

B1 B1 B1

A1 A2 A3 A1 A2 A3 A1 A2 A3

Shadow: Sh[B, A](a)(c)

B1 B1
B1

Figure 11: Comparing operators: Flatten vs. Shadow

Use (3) (eliminates some bidders)

Other operators….

+

Select

1LCL=3

LCL=2

LCL=1

bidder

open_auction

doc_root

2

3

(2)Selection

LCL=13bidder 4

Use (13) 5

Use (3) (eliminates some bidders)

Other operators….

Select

1LCL=3

LCL=2

LCL=1

bidder

open_auction

doc_root

2

3

Use (3) 5

+

Shadow (2, 3)

Illuminate (3)

1a

4

(a) Original Query (b) Query after Shadow rewrite

NotUse (3) 6

Figure 12: Shadow/Illuminate rewriting procedure. This
generic example is indicative of how the procedure is per-
formed. Note how the APT for Selection 1 has been replaced by
an APT using an “+” annotated edge followed by the Shadow
1a operator. Selection 4 is replaced by Illuminate 4. We have
eliminated redundant access to the database.

Definition 7. Illuminate IL[LCLi](S) takes as input a set of
trees S and an LC label LCLi; for each tree in the S all (inac-
tive) nodes in the indicated logical class LCLi are rendered active
(including their subtrees).

Note that Shadow and Illuminate do not complement each other;
Shadow breaks the tree into many trees, but Illuminate does not
affect the number of trees at all. Illuminate is necessary because no
other operator can access shadowed nodes.

Shadow / Illuminate Rewrite Rule.
PHASE 1: (Detect if SH/IL rewrite can be used). Find a Selec-

tion S[aptA]() and a succeeding Selection S[aptS], such that A,
B are two LCs in the aptA and C is an LC in aptS , and tree(B),
tree(C) are the subtrees rooted at B, C in aptA, aptS respectively.
For the rewrite to be applicable the following conditions must all
be satisfied: (i) {[(A, B) ∈ EaptA] ∧ [(LCLA, C) ∈ EaptS] ∧
[mSpec(A, B) = (− or ?)] ∧ [mSpec(LCLA, C) = (+ or ∗)]
∧ [tree(B) ⊆ tree(C)]} = TRUE, (ii) Let use[tree(B)] be some
arbitrary operator using B and notuse[tree(B)] mean that no
other operator accesses B after that step. Check if the operator tree
is (1): notuse[tree(B)](use[tree(C)](S[aptS](use[tree(B)](
S[aptA](. . .))))).

PHASE 2: (Perform the rewrite). Let aptB = aptA but with
mSpec(A, B) = [mSpec(LCLA, C) and aptD1, . . . , aptDn =
aptS - tree(C) (forest). The operator tree (1) now becomes (2):
use[tree(B)](S[aptD1], . . ., S[aptDn](IL[B](use[tree(B)](
SH[A, B](S[aptB](. . .)))))).

Note that possibly A, B, C can be part of the same aptA as in
the Flatten rewrite. Flatten in that case forces the predicate on the
node associated with the (* or +) edge to be evaluated first, i.e. the
aggregate. We can use Shadow/Illuminate to perform the opposite,
evaluate the predicate on the node associated with (- or ?) edge
first, i.e. the join. The details of this rule can be derived from the
presented one and are omitted due to space restrictions.

Figure 12 shows the rewrite procedure using a generic TLC plan
illustrating how the rules work. Using this rewrite we have avoided
going to the database twice and performing two pattern matches
to access the same bidder node. The rewrite for Query Q1 can be
performed by replacing Selection 9 with an Illuminate operator and
using Shadow in place of Flatten as in Figure 10.

5. PHYSICAL IMPLEMENTATION
We implemented the TLC algebra as part of the TIMBER [8] sys-

tem developed at the University of Michigan. TIMBER follows

the model of a native XML database similar to Tamino [14], X-
Hive [20], etc. While most of the implementation details are not
within the context of this paper, there are a couple of crucial is-
sues we felt it was important to find the space to describe. These
issues involve node identification, pattern tree matching and effi-
ciency during the evaluation of a query.

5.1 Node Identifiers
A node is the minimum storage unit in an XML implementation.

We need Node identifiers to identify nodes in the database or in
memory. We have identified a set of properties that node identifiers
must satisfy, they are seen in Figure 13.

1. Provide unique identifiers, for correctness.
2. Identify structural relationship between nodes, for struc-

tural joins.
3. Indicate absolute node order within a tree,

for document ordering (a document is a tree).
4. Indicate node order within all nodes of the same class,

looser more flexible ordering notion.

Figure 13: Important Properties for Node Identifiers

Property 1 is necessary to guarantee uniqueness of a node when
we access it; repeated elements in the same level of a tree require a
unique method to access each one of them. Property 2 enables us
to use the very popular structural join algorithms [1, 3] to perform
the pattern tree matches. Properties 3 and 4 are non-intuitive and
we will discuss them in further detail.

XML queries must maintain document ordering. An implemen-
tation is forced to do all joins using a nested loops algorithm; else
document order is no longer maintained. We wanted to overcome
this difficulty by requiring our identifiers to indicate absolute tree
order (Property 3). Now we can assign node ids based on the doc-
ument order of each node. If element A precedes B, then node A
will have a smaller node id4. This technique allows us to sort any
sequence of trees based on the node id of the root and re-establish
document order. Sorting on node id is usually not too expensive,
since all the information needed is typically already in memory.
Hence for our joins we use a sort-merge-sort algorithm. We sort
the two input sequences based on their join values, merge them and
then sort the output based on the node id of the first sequence. This
way we achieve better performance and linear scalability without
sacrificing document ordering.

After implementing our algorithm, we quickly realized that we
use many temporary nodes generated during query execution. Such
nodes include join root, group root, tag nodes generated for the re-
turn and so on. To assign identifiers for these nodes, we would
have to renumber the in-memory trees, this procedure is described
in “Dynamic-Intervals” [6]. Renumbering the in-memory trees is
inefficient. But we realized that temporary nodes do not need to
satisfy all the node identifier properties. Using logical classes and
in-memory tree structures we can identify child inclusion of a tem-
porary node; hence property 2 can be ignored. Although document
ordering is important in XML, the temporary nodes are not part of
the original document; hence they do not need to satisfy full tree
ordering. Instead all nodes of the same class across a sequence
of trees, must be sortable5 (can be sorted using their identifiers).
Hence we introduce Property 4 which is a subset of Property 3. So
temporary node identifiers must satisfy properties 1 and 4 but do
not need to satisfy properties 2 and 3. This principle enables our

4The same holds for element A containing B
5Necessary for sort-merge-sort and output that reflects correct or-
der.

implementation to assign identifiers without having to renumber
the entire tree.

5.2 Pattern Tree Matching
A pattern tree match is implemented using a combination of

value joins (implemented as in relational systems) and structural
joins (implemented as described in [1, 3, 5]). For annotated pattern
trees, these join techniques do not suffice. An edge annotated with
a “+” or “*” requires the produced witness trees to have “nested”
nodes. One simple solution is to treat all edges in an APT as if they
were flat (“-” or “?”) and then use an explicit grouping procedure
combined with a projection to produce the necessary structures.
But grouping is an expensive operator, and this sort of physical im-
plementation defeats a primary reason to define TLC algebra in the
first place. Instead we define a variation for the join algorithms with
the grouping procedure pushed in; we call the resulting operators
Nest-Structural-Join and Nest-Value-Join.

Definition 8. Nest-Structural-Join NSJ [LCl, r, LCr](Sl, Sr):
The operator accepts as input two sequences of trees Sl, Sr . As pa-
rameters, two LC labels LCl, LCr (one for each input sequence)
and the desired structural predicate r between them. LCl must
bind to a singleton set of nodes for each tree in Sl and LCr must
bind to the root of each tree in Sr . r indicates the desired struc-
tural relationship (parent/child (pc) or ancestor/descendant (ad)).
The output is generated using the following algorithm. For each
input tree Tl in Sl, and all input trees Trm, . . . , Trn in Sr , where
[r(LCl, LCrm) = True), . . . , (r(LCl, LCrn) = True], gen-
erate one output tree To by stitching together Tl and a cluster of
Trm, . . . , Trn as specified in [r(LCl, LCrm), . . . , r(LCl, LCrn)]

The difference from a regular structural join lies in the generation
of the output. The regular version creates an output tree for each
pair of matching trees from Sl and Sr . Instead, for the nest version
each tree in Sl and all matching trees in Sr are returned in one
output tree. The example in Figure 14 illustrates the difference
between a regular structural join and a nest one.

Sample Data
E1 B1D1 D2

A1

Structural Join

D1 D2

A1 A1

Nest Structural Join

D1 D2

A1

Figure 14: Structural join vs. nest structural join.

The Nest-Value-JoinNV J [LCl, p, LCr](Sl, Sr) is defined sim-
ilarly. An output tree consists of one tree in Sl and all match-
ing trees in Sr as described by p. Note that the operator is only
left nested. We can also have variations like Left-Outer-Nest-
Structural-Join and Left-Outer-Nest-Value-Join, which output
a tree from the left input sequence even if no matching trees from
the right sequence are found. We omit the formal definitions due to
space restrictions.

Using both regular and Nest-joins as primitives we implement
a pattern tree match for an APT using the following simple rules:
“-” edges are matched by regular structural and value joins, “?”
edges by left-outer-joins, “+” edges are matched using nest-joins
and “*” by left-outer-nest-joins. Join order should be considered
by an optimizer and describing it is not in the scope of this paper.
For our implementation we used a simple bottom-up approach.

6. EXPERIMENTAL EVALUATION
All the experiments were executed using the TIMBER [11] na-

tive XML database system. XQuery queries were translated to TLC

plans using our algorithm as specified in section 3. The plans utilize
our algebraic operators, with no structural rewriting or cost-based
optimization performed. We tested the rewrites proposed in sec-
tion 4 by further extending a few queries and we discuss them in
a separate sub-section. For our data set we used the XMark [21,
13] generated documents. Factor 1 produces an XML document
that occupies approximately 710MB (479MB for data plus 242MB
for indices) when stored in the database. Experiments were ex-
ecuted on an AMD Athlon 1833MHz machine running Windows
2000 professional, with IDE hard drives. The database was set up
to use an 128MB buffer pool. All numbers reported are the average
of the query execution time over five executions6.

6.1 The Competition
We wanted to compare TLC against other tree pattern translation

approaches that utilize set-at-a-time processing. We chose the pop-
ular TAX [9] algebra and the recent and more efficient GTP [4].
Discussing the details of each approach is beyond the scope of this
paper. Very briefly we will describe the intuition for each algorithm
and our implementation for it.

The TAX algebra plan consists of a sequence of operators that
takes a pattern tree as argument. We mapped each pattern tree
to a series of structural joins and each TAX operator into corre-
sponding physical operators. Because the TAX plan is a straight-
forward mapping from logical to physical operators, we will only
explain how the logical operators are created for Query Q1. For the
FOR/WHERE part TAX will generate a selection with an associ-
ated pattern tree in a similar manner to TLC. The selection will be
followed by a projection and a duplicate elimination using the same
pattern tree, retaining only nodes bound to XQuery variables. The
entire subtree is retrieved for such nodes, because it is assumed to
be used later in the query. For the RETURN clause TAX will cre-
ate a selection for every path. Then a join operator will be used to
stitch together the RETURN clause paths with the FOR/WHERE
parts of the query, joining on the bound variables. TAX does not
support annotated edges in its pattern trees, and to compensate for
that it uses a grouping procedure to get the semantics for “*” or
“+” edges7. Note that a simple groupby by a succeeding projec-
tion only suffices for the case where TLC would create a single
path containing “+” or “*” edges. But if those edges were to span
in multiple branches (e.g. multiple arguments in the return, LET,
aggregate etc.), the corresponding TAX grouping procedure would
involve splitting up the tree, do the grouping and projection for
each branch, and then merge the produced paths. Figure 7 shows a
TAX-like representation for Q1.

The GTP algorithm uses an alternative approach in creating the
execution plan. Instead of creating multiple pattern trees for various
subparts of the query (FOR, WHERE, RETURN etc.), an abstract
generalized tree is used to capture the semantics for the entire query
(contains “?” edge semantics). In the presence of nested queries
with joins multiple such trees can be generated. The generalized
tree uses special markings for the bound XQuery variables, and an-
notates the RETURN edges as optional. From that generalized tree
the physical plan is generated using structural joins to map each
edge. Similar to TAX, aggregates, RETURN paths etc. (everything
that corresponds to “+” or “*” pattern tree edge in TLC) are ad-
dressed via a grouping procedure that potentially includes splitting
the trees, grouping and then merging the results (a DAG-like proce-
dure). But GTP is more efficient than TAX because the generalized
tree captures the semantics for the entire query allowing pattern

6The highest and the lowest values were removed and then the av-
erage was computed
7A similar in concept union procedure is used for “?”

tree reuse. Hence many redundant TAX pattern tree matches are
avoided. Also there is no need to either bring in memory the sub-
tree for each bound variable node or perform a value join at the
end.

We also implemented a navigational algorithm. The algorithm
traverses down a path by recursively getting all children of a node
and checking them for a condition on content or name before pro-
ceeding on the next iteration.

6.2 Tested Queries
We executed dozens of queries : those described in the XMark

benchmark as well as our own. In our tests we wanted to check all
factors that instigate heterogeneous tree sequences, such as aggre-
gates, return arguments (and number of them), LETs etc. We also
wanted to use a diverse set of queries with different selectivity and
data materialization costs, enabling us to effectively compare our
algorithm against other approaches. We discuss the entire set of
XMark queries (x1, . . . , x20), the examples used in the paper (Q1,
Q2) and a variation of one XMark query (x10→10a) with a highly
selective filter on it.

We used an index on element tag name for all the queries, which
returns the node identifiers given a tag name. On all queries that
had a condition on content we used a value index, which returns the
node ids given a content value. Unfortunately our implementation
does not support indices on join values. Results are summarized
in Figure 15. The maximum time we allowed a query to run is 10
minutes; if the execution did not finish in that period, we report
DNF in the corresponding column.

6.3 Results Discussion
Examining the results presented in Figure 15 we make the fol-

lowing observations. TLC outperforms Navigational(NAV) for ev-
ery query tested, most times by one or two orders of magnitude.
TLC outperforms TAX for every query tested by a large factor and
a few times by more than one order of magnitude. TLC outper-
forms GTP in most cases, a couple of times by up to one order of
magnitude.

TLC vs GTP. Since GTP performs better than the other two
plans we will start by explaining its differences with TLC. Both
TLC and GTP perform the pattern tree match via structural joins,
reusing already matched information. For what are TLC “*” and
“+” edges, GTP uses a grouping procedure as we described in sub-
section 6.1. This grouping procedure has the following disadvan-
tages: (i) groupby costs more than nest-joins, (ii) projection has to
perform a pattern tree match (via structural joins or navigation) on
the grouped results to retrieve the nested nodes, TLC just uses a LC
reference, (iii) a DAG-like plan graph has to be used involving split-
ting and merging each nested path, TLC uses a regular pipelined
execution.

For each query path size, value joins and data access costs affect
both GTP and TLC the same way. We see a difference in perfor-
mance when the query uses multiple arguments per return (A/R)
clause, aggregates, count, LET bindings and nested clauses (let us
call them heterogeneity instigators). So for queries with a single
A/R and very few results TLC and GTP perform similarly: such
queries are x1, x4, x15 and x16. For queries that have average to
lots of produced results and 1 or 2 A/R TLC outperforms GTP up
to 2.5 times (for x13): such queries include x2, x3, x13, x14, x17,
x18 and x19. When count is used, if the count is small (e.g. counts
few elements per tree), like x5, performance difference is average
(e.g. 30%), but for multiple counts or big counts TLC performs 2
times faster than GTP. When we mixed this heterogeneity instiga-
tors (LET and count and nested queries), the performance differ-

TLC GTP TAX NAV Comments
x1 0.05 0.06 0.17 29.03 1 A/R, single OT
x2 0.61 0.96 12.54 25.88 1 A/R, lots OT
x3 2.16 2.95 6.45 26.94 J, 2 A/R, avg OT
x4 0.30 0.33 1.39 34.91 1 A/R, two OT
x5 0.17 0.21 1.06 29.78 small count, 1 A/R
x6 0.11 0.22 0.90 128.3 big count, ‘//’
x7 0.49 0.98 1.91 131.1 3 big counts, ‘//’
x8 4.88 6.72 28.56 43.52 J, LET, 2 A/R
x9 7.41 11.80 83.28 82.63 2J, LETs, 2 A/R
x10 74.3 DNF DNF 89.24 LET, 12 A/R, lots OT
x11 9.95 13.56 45.67 52.70 count, LET, lots OT
x12 4.50 6.79 15.67 49.24 count, LET, avg OT
x13 0.23 0.62 1.89 30.88 2 A/R, avg OT
x14 2.26 2.78 6.44 134.4 ‘//’, contains on desc
x15 0.97 0.97 2.70 87.05 long path, return $var
x16 1.16 1.27 2.89 87.95 long path, 1 A/R
x17 0.36 0.59 1.65 27.89 1 A/R, lots OT
x18 0.11 0.27 1.22 24.13 1 A/R, lots OT
x19 4.18 5.08 12.39 129.4 //, 2 A/R, sort, lots OT
x20 0.66 0.78 5.88 27.47 4 counts

Q1 2.35 5.14 19.21 132.5 ‘//’, J, count, 2 A/R
Q2 2.70 8.88 46.34 137.4 //, J,count,2 A/R, LET
10a 3.03 33.69 79.92 87.46 LET, 12 A/R, few OT

Figure 15: Execution time in seconds for XMark data size fac-
tor 1. Algorithms used: Navigational(NAV), TAX, GTP and
TLC. We used XMark XQueries (x1, . . . , x20), queries Q1, Q2
from the paper examples, and 10a as a variation of x10 with a
selective filter applied on it. The abbreviations used in the com-
ments are: A/R = Arguments per Return clause, OT = Output
Trees, J = Value Join.

ence ranges from 50% to 300%: such queries are x11, x12, x9, Q1
and Q2 (data materialization costs dominate most queries, else we
would see even bigger difference). The worst performance is seen
for query x10, which involves a nested query on LET using 12 A/Rs
in the inner clause. This forces GTP to break the query up into 12
paths, do the grouping procedure and then do another grouping to
get the LET binding in the outer part (essentially a nested group-
ing). The amount of memory needed for such a procedure is big
and that forces the computation to run at disk speed (a lot of pages
need to be flushed to disk and then read back). The GTP plan for
x10, cannot finish in 10 mins, so we used a filtering condition to
make it very selective (10a) to show the performance difference of
about one order of magnitude vs TLC.

TLC vs TAX. TAX, when compared with TLC, has all the draw-
backs that GTP has, plus a few extra of its own. TAX does not reuse
pattern tree matches, it materializes results early (brings in subtrees
for bound variables) and needs to perform a join to process the RE-
TURN clause (aside from the grouping procedure). This makes the
behavior of TAX much worse than that of GTP. The best case for
TAX is when either the queries produce few results with 1 A/R and
no other heterogeneity instigator or the queries have a simple se-
lection and dominating data access cost. Such cases are queries x1,
x3, x14, x15, x16 and x19, where TLC is 2 to 3 times faster than
TAX. If the query includes multiple heterogeneity instigators, TAX
suffers a lot. The early materialization imposes a penalty for carry-
ing data nodes through all the groupings for counts, join, LETs etc.
Also due to this reason, nested queries perform poorly for TAX:
notice how TLC wins by over an order of magnitude for x9, x10
and Q2.

0

0.5

1

1.5

2

2.5

3

x3 x5 Q1 Q2

Queries

se
cs

TLC

OPT

Figure 16: Execution time in seconds. Presenting the regular
TLC plan vs. the optimized (OPT) plan, produced by perform-
ing the Flatten and Shadow rewrites.

TLC vs Navigational. Navigational (NAV) behaves very dif-
ferently than TAX and GTP. In general, data materialization cost
does not affect NAV much since it has already paid the cost of get-
ting all children8. So having to deal with nested queries, LETs
and multiple A/R is not a problem. Instead we found that NAV
highly depends on the path size and on the number of children
for each data node. The smaller the path and the number of chil-
dren the better the algorithm behaves. For example, x3 has a path
site/open auctions/open auction which corresponds to 1/6/many el-
ements. All of the open auction elements have to be considered
for this query (all of many) by all algorithms. So this is one of the
better cases for a navigational plan. NAV suffers when the query
uses ‘//’ like x6, x14, x19, Q1 and Q2. Navigational is affected
by selectivity a lot, it has to do the same amount of iterations even
if the query were to produce zero results, hence highly selective
queries pose a problem for navigation. So for x10 where nothing
is filtered out, TLC performs very close to NAV; the data material-
ization cost dominates the query. But for a query like x1, which is
highly selective, TLC performs 2 orders of magnitude better. The
worst case scenario for navigation is the usage of counts. TLC per-
forms the count without touching the data in a fraction of a second
whereas NAV has to iterate over all nodes: such examples are query
x5 where TLC is 2 orders of magnitude better and x6 that uses ‘//’
besides counts and TLC is 3 orders of magnitude better.

6.4 Flatten and Shadow/Illuminate
The proposed Flatten and Shadow/Illuminate rewrites as described

in section 4 are not applicable to all queries. We present four
queries, x3, x5, Q1 and Q2, where the rewrites were applicable.
The results are shown in Figure 16. The figure shows the perfor-
mance of each query for the regular TLC plan and the optimized
(OPT) plan. As we can see, the optimizations can lead to a big
performance increase: after performing the rewrites TLC plans can
be up to 2 times faster. The performance difference is due to the
eliminated redundant structural joins and data accesses. The higher
the number of eliminated joins the better the performance will be.

6.5 Scalability
We tested all our queries to see how TLC produced plans scale

using our implementation. We used a variety of XMark data size
factors from 0.1 (approx. 67MB combined data plus indexes space)

8In our storage nodes are clustered with their children. So the disk
cost of getting all children ids is almost the same as getting all
children ids and their values.

0

2

4

6

8

10

12

14

0 1 2 3 4 5

XMark factor

se
cs

x3

x5

x13

Q1

Q2

Figure 17: Execution time in seconds for XMark size factor 0.1
through 5. Queries x3, x5, x13, Q1, Q2 are plotted.

up to factor 5 (approx. 3.5GB combined data plus indexes space).
Plotting 23 queries would only make the figure impossible to read.
So we used queries x3, x5, Q1, Q2 (already talked about in the pre-
vious section) and x13. The results are seen in Figure 17; the pro-
duced TLC plans scale linearly with size. Queries x5 and x13 are
simple selections where the dominating cost is that of the structural
joins – a value index was used in x5 to satisfy the predicate. Queries
x3, Q1 and Q2 have value joins and Q2 is also a nested query. Since
our implementation did not support value join indexes, data access
on the join value is the dominating cost. Please note that value join
queries scale linearly because our node identifiers allow us to use
the sort-merge-sort algorithm mentioned in Section 5.1.

7. RELATED WORK
There are three major implementation approaches to XML data

management and XQuery evaluation. Mapping to relational [7, 17,
6, 22, 15], native navigational-based [16], and native algebraic-
based [11, 12, 14, 20]. Most previous work on algebraic native
XQuery implementation has focused on efficient evaluation of XPath
expressions via structural joins [1], holistic joins [3] and optimal
ordering of structural joins for pattern matching [19, 5]. The Nia-
gara [12] system makes extensive use of structural joins for pattern
matches, as does TIMBER [11]. We feel that these systems could
benefit from the nest-joins variations we introduced in our imple-
mentation as an important primitive.

There is no universally accepted XML algebra. In the past there
have been proposals in the literature, divided into two major ap-
proaches: node algebras [10, 18] and tree algebras [9, 4]. The
former manipulate sets of XML elements (nodes), but have a prob-
lem with the inclusion structure of XML. They either lose it or are
forced to maintain the subtree under each node (Niagara). The lat-
ter class addresses the problem by using the more efficient concept
of a pattern-tree match. Witness trees produced after the match
have uniform structure (identical to the pattern tree) and individual
elements in the match result can be named and accessed in the al-
gebraic operators. But the semantics of XQuery demand sub-trees
of the original XML tree to be restructured and heterogeneous tree
sequences to be generated for the query to be evaluated correctly
(e.g. aggregates, LET bindings, RETURN bindings etc.). Tree al-
gebras like TAX [9] and GTP [4] rely on a grouping procedure
to restructure the repeated elements under some node. Then to
identify the nodes of interest, such algebras have to navigate the
in-memory structure or perform another pattern tree match. Al-
though this generates the correct solution, it performs poorly when

the query workload contains several such cases9. TLC solves this
problem by using Annotated Pattern Trees (APTs) to construct the
nested elements and Logical Class (LC) bindings to sets of nodes
to identify the nodes of interest and allow the operators to use them.
We feel that any tree algebra can be extended appropriately to use
APTs and LCs and have the same benefits with TLC when dealing
with heterogeneous tree sequences.

Recently the “Dynamic-Intervals” paper [6] tries to mix the re-
lational mapping implementation with the XML-specific algebraic
approach of native XML databases. They make use of the well-
known interval encoding of trees and then assign these intervals
dynamically for intermediate results. XQueries are translated to an
extend SQL that includes structural-join like primitives. A direct
experimental comparison with their approach is difficult since their
algorithm is tied with their implementation and focuses on the dy-
namic interval assignment. Doing an informal system comparison
(both implementation and algorithm) as described in their paper,
we outperform them by up to an order of magnitude (see queries
x8, x9, x13 that use no value or join index as they did). Given
the different platforms used, such comparison is definitely ad hoc.
However, it serves to give a general indication. We feel that even
their system can benefit by applying TLC on top of their imple-
mentation as long as they support primitives like structural-joins
and nest-structural-joins and add support for logical classes.

8. CONCLUSION
The flexibility of XML poses a significant challenge to query

processing: it is hard to perform set-oriented bulk operations on
heterogeneous sets. In this paper we have proposed the TLC alge-
bra as an effective means to address this problem through a novel
notion of logical classes and related logical class reduction. Through
this, not only do we enable algebraic operators to work with het-
erogeneous sets, but we also eliminate redundant computation re-
quired by previous approaches. In addition to proposing the TLC
algebra, our contributions include: the presentation of an algorithm
to translate a significant fragment of XQuery into TLC algebra, the
development of an efficient implementation of TLC algebra and a
careful experimental evaluation that shows the substantially supe-
rior performance of our TLC implementation compared to other
implementations of the same queries via different algebras.

9. REFERENCES
[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel,

D. Srivastava, and Y. Wu. Structural joins: A primitive for
efficient XML query pattern matching. In Proc. ICDE Conf.,
Mar. 2002.

[2] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,
J. Robie, and J. Simeon. XQuery 1.0: An XML query
language. Working Draft.
http://www.w3.org/TR/xquery.

[3] N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins:
Optimal XML pattern matching. In Proc. SIGMOD Conf.,
2002.

[4] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and
S. Paparizos. From tree patterns to generalized tree patterns:
On efficient evaluation of XQuery. In Proc. VLDB Conf.,
Sep. 2003.

[5] C.Zhang, J.Naughton, D.Dewitt, Q.Luo, and G.Lohman. On
supporting containment queries in relational database
management systems. In Proc. SIGMOD Conf., 2001.

9such a query workload is becoming all too common

[6] D. DeHaan, D. Toman, M. P. Consens, and M. T. Ozsu. A
comprehensive XQuery to SQL translation using dynamic
interval encoding. In Proc. SIGMOD Conf., Jun. 2003.

[7] D. Florescu and D. Kossman. Storing and querying XML
data using an RDMBS. IEEE Data Eng. Bull., 22(3), 1999.

[8] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C.Yu. TIMBER:
A native XML database. VLDB Journal, 11(4), 2002.

[9] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and
K. Thompson. TAX: A tree algebra for XML. In Proc. DBPL
Conf., Sep. 2001.

[10] B. Ludascher, Y. Papakonstantinou, and P. Velikhov.
Navigation-driven evaluation of virtual mediated views. In
Proc. EDBT Conf., Mar. 2000.

[11] U. of Michigan. The TIMBER project.
http://www.eecs.umich.edu/db/timber.

[12] U. of Wisconsin. The Niagara internet query system.
http://www.cs.wisc.edu/niagara/.

[13] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for XML
data management. In Proc. VLDB Conf., 2002.

[14] H. Schoning. Tamino - A DBMS designed for XML. In Proc.
ICDE Conf., 2001.

[15] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J.
DeWitt, and J. Naughton. Relational databases for querying
XML documents: Limitations and opportunities. In Proc.
VLDB Conf., 1999.

[16] J. Simeon and M. F. Fernandez. Galax, an open
implementation of XQuery.
http://db.bell-labs.com/galax/.

[17] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In Proc. SIGMOD
Conf., 2002.

[18] S. D. Viglas, L. Galanis, D. J. DeWitt, D. Maier, and J. F.
Naughtonn. Putting XML query algebras into context.
http://www.cs.wisc.edu/niagara/.

[19] Y. Wu, J. M. Patel, and H. V. Jagadish. Structural join order
selection for XML query optimization. In Proc. ICDE Conf.,
Mar. 2003.

[20] X-Hive Corp. X-Hive/DB native XML storage.
http://www.x-hive.com/.

[21] XMark, an XML benchmark project.
http://www.xml-benchmark.org/.

[22] X. Zhang, B. Pielech, and E. A. Rundensteier. Honey, i
shrunk the XQuery! — an XML algebra optimization
approach. In Workshop on Web Information and Data
Management, 2002.

