
10 SOOL, a Simple

Object-Oriented Language

In the last two chapters we introduced the formal notation necessary in order

to specify programming languages. Now we are ready to present the formal

specification of a simple object-oriented programming language, SOOL, inSOOL

terms of the formal notation of ΛP
<:. The language SOOL is intended to

share the core features of most statically typed class-based object-oriented

programming languages. It is essentially the same language used in the ex-

amples in the earlier chapters of this book. It does not include the extensions

discussed in Chapter 4. These will be added in Part IV, starting with Chapter

15.

Analyzing this language and its extensions will be the focus of most of the

remaining chapters of this text. We will first carefully give formal specifica-

tions of the syntax, type-checking rules, and semantics of the SOOL. With

that specification complete we will be able to prove that the type system is

sound.

In order to make it simpler to write down semantics and type-checking

rules for our language, the syntax for the language will be somewhat more

cluttered than most common object-oriented languages. However, we will

also introduce abbreviations which provide a more friendly and familiar pro-

gramming style. One can imagine the early steps of a compiler expanding

the code from the language with abbreviations to the full language.

10.1 Informal description and example

An early example of the programming notation introduced in Chapter 2 was

the program repeated in Figure 10.1. That will be a valid class definition

in our language with abbreviations (as will the version that drops all of the

“self.” subexpressions), but the formal language specification will define

174 10 SOOL, a Simple Object-Oriented Language

class CellClass {
x:Integer = 0;

function get(): Integer is
{ return self.x }

function set(nuVal:Integer): Void is
{ self.x := nuVal }

function bump(): Void is
{ self ⇐ set(self ⇐ get()+1) }

}

Figure 10.1 Cell class.

a more verbose version of the language which allows function and classes

to be defined as “anonymous” expressions. That is, similar to the way the

lambda calculus allows one to define unnamed function expressions using

the lambda notation, we will be able to write down unnamed expressions

that represent functions and classes.

In Figure 10.2, CellClass is shown as written in the fully expanded lan-

guage. We explain the changes in notation between the two versions below.

In the fully expanded language we will adopt some of the notation of the

lambda calculus with references described in Section 5.1.3. Types of the form

Ref T are reference types, denoting the types of variables holding values

of type T. An expression with type Integer (e.g., 3+7) denotes an integer

value, while an expression x of type Ref Integer denotes an updatable

variable holding values of type Integer.

An expression of the form ref e denotes a reference or location holding

the value of e. These expressions are used to initialize variables. If x is

declared to be a variable of type T with initial value e in the abbreviated

language, then x will be defined as a constant with type Ref T and value

ref e in the expanded language.

We will use the val qualifier to distinguish between the value of a variable

as a location (e.g., as used on the left side of assignment statements) and the

value stored in the variable (e.g., as used on the right side of expressions).

Thus if x is an integer variable (identifier with type Ref Integer), we will

10.1 Informal description and example 175

CellClass = class({|
x:Ref Integer = ref 0

|}, {|

get:Void → Integer =
function(v:Void): Integer is {

return val self.x };

set:Integer → Command =
function(nuVal:Integer): Command is {

self.x := nuVal;
return nop };

bump:Void → Command =
function(v:Void): Command is {

self ⇐ set(self ⇐ get()+1);
return nop }

|})

Figure 10.2 CellClass in the fully expanded language.

write

x := (val x) + 1;

rather than the more usual x := x + 1.

We will generally not bother to include the Ref types, ref expressions,

and val qualifiers in example code, but we will use them in formal spec-

ifications in order to distinguish variables of type T from values of type T
and the two kinds of values of variables. Having these distinctions show up

in the language will make it significantly easier to write type-checking rules

and semantics for SOOL.

In order to avoid having to distinguish between functions and procedures

in the semantics, the expanded language will represent procedures as func-

tions which return a value nop of type Command, the type of commands. The

expression nop stands for a command which does nothing. In the abbrevi-

ated language, we will allow return nop to be omitted.

Because of this convention, the return type of procedures will also be given

as Command, the type of all other statements, rather than the Void we have

been using in the abbreviated language. While this differs from the conven-

176 10 SOOL, a Simple Object-Oriented Language

tions used in C-style syntax, it is helpful to distinguish between a function

which takes a default value () of type Void, and a procedure whose return

type indicates that it is executed to change the state of the computer.

Invoking a parameterless method involves applying it to (). In order

to make method definitions and invocations more uniform, parameterless

methods will be considered to be abbreviations for methods which take a

new (and unused) parameter of type Void. Because () has type Void, this

will work smoothly with our type-checking rules.

Other differences between the original and the non-abbreviated version

of the notation for class definitions are that names of classes and methods

are separated from the expressions that define them, and method names are

provided with their types. One reason for specifying this somewhat more

verbose version of the language is that it will allow us to have anonymous

class and function expressions.

The method get in Figure 10.2 illustrates these differences. The method

name with its signature (typing) occurs before the equals sign. After the

equals sign is the definition of the anonymous function represented by get.

Another change is that the collections of instance variables and methods

are grouped together using the symbols “{|” and “|}”. These symbols are

chosen to be distinct from the curly brackets used to enclose sequences of

statements. As we will see in the formal specification, records are not consid-

ered expressions or types of SOOL. However, notation representing classes

as being composed of a record of instance variable declarations and another

record of method definitions will make it easier to specify type-checking

rules.

These changes are included to make the formal syntax more uniform and

allow us to write fewer formal rules for grammar, type checking rules, and

semantics. It should be clear that it is easy to automatically translate a pro-

gram in the abbreviated language into one of the expanded language. Again,

all formal specification will be of the expanded language.

10.2 Syntax and type-checking rules

In this section we will provide formal specifications of the syntax and type-

checking rules for our simple language, SOOL. Later on we will add more

constructs to the language to increase its expressiveness. The expressions of

SOOL are limited to those which type check correctly. As with the typed

lambda calculus, we will introduce these expressions in two steps. In this

10.2 Syntax and type-checking rules 177

section we provide the syntactic specification of pre-expressions of the lan-

guage, some examples, and then the type checking rules. The legal expres-

sions of the language will be comprised of those pre-expressions which can

be assigned a type via the type-checking rules.

10.2.1 Syntax of types and expressions

The syntax of SOOL types and expressions will be given by a context-free

grammar. Because expressions contain type expressions, we begin by speci-

fying the syntax of types.

Syntax of types

The definition of type expressions will be built from a collection of built-

in types (or type constants), T C. We assume that T C contains at least the

type constants Integer for the set of integers, Real for the real numbers,

Boolean for the booleans, Character for the characters, String for the

strings, Void for a type with only a single value, written (), and Command
for the type of statements or commands. When convenient, we will assume

T C has other built-in types.

Definition 10.2.1 The set, T YPESOOL(T C,L, T I), of type expressions of SOOL

over a set T C of type constants, a set L of record labels, and a set T I of type identi-

fiers is given by the following context-free grammar (where we assume t ∈ T I, C ∈
T C, li ∈ L, and T, Ti ∈ T YPESOOL(T C,L, T I)):

T ∈ Type ::= C | t | T1 × . . .× Tn → Tn+1 | Ref T |

ObjectType RT | VisObjectType (RTi, RTm) |

ClassType (RTi, RTm)

RT ∈ RType ::= {| l1:T1; . . . ; ln:Tn |}

Items generated by RType are not themselves considered legal types of

SOOL. Instead these record types are used only to build up legal object and

class types. Record types consist of a list of labels and their associated types.

Types of the form T1 × . . .× Tn → Tn+1 are function types, denoting func-

tions which take n arguments of types T1 through Tn and return a value of

type Tn+1. Object types are provided with a record type that specifies the

names and types of methods.

As discussed earlier, types of the form Ref T are reference types, denoting

the types of variables holding values of type T. An expression with type In-

178 10 SOOL, a Simple Object-Oriented Language

teger (e.g., 3+7) denotes an integer value, while an expression x of type Ref
Integer denotes an updatable variable holding values of type Integer.

Types of the form ObjectType M are the types of objects with method

names and types given by the record type M. (We often use identifiers M and

IV to represent record types, where M is used as the type of the record of

methods in a class or object, while IV is used as the type of the record of

instance variables.) The names and types of instance variables are not visible

in object types.

The keyword self provides access to both the instance variables and

methods of the object. As a result, we need a type for self that includes the

names and types of instance variables, reflecting the fact that they are visi-

ble or accessible via self. Thus the type of self will be a “visible” object

type rather than ObjectType M. Types of the form VisObjectType (IVref ,

M) are introduced explicitly to serve as the types of self. In definitions of

this form, IVref will represent the type of the record of instance variables (all

of which will be references), whereas M will represent the type of the record

of methods (all of which will be functions).

We have so far only encountered class types briefly in Section 5.3, where

we discussed the lack of subtyping between class types. Class types are nor-

mally not explicitly written in programs of SOOL. However, because we

will support class expressions, it is possible to have variables that hold class

values or to pass class expressions as parameters to functions.

While objects hide their record of instance variables, the instance variables

will be visible in classes, as they may be used in subclasses. (Thus our in-

stance variables behave like protected members of Java or C++, and are vis-

ible in subclasses.) Thus the types of instance variables must be specified in

class types.

In a class type of the form ClassType (IV, M) , IV is the record type spec-

ifying the names and types of the initial values of instance variables, while

M specifies the names and types of the methods. Notice the difference be-

tween the types in visible object types and class types. In the former, IVref

represents the type of the record of instance variables. That is, it is a record

of reference types. In class types, IV represents the type of a record of initial

values of instance variables. Typically these will not be explicit references.

Syntax of expressions

The syntax of SOOL programs is given by a context-free grammar. Rather

than specifying all of the built-in constants and pre-defined functions of the

10.2 Syntax and type-checking rules 179

language, we will simply assume that there is a collection, EC, of such ex-

pressions. This will allow us to introduce such built-in expressions as needed

rather than give a complete specification now. We also assume a collection,

L, of labels (used for method and instance variable names), and a set, EI, of

expression identifiers.

Definition 10.2.2 The pre-expressions, PEXPSOOL(EC,L, EI), of SOOL over

a set EC of expression constants, a set L of labels, and a set EI of identifier names, is

given by the following context-free grammar (where we assume id ∈ EI , t ∈ T I,

c ∈ EC, li,mi ∈ L, and T, Ti ∈ T YPESOOL(T C,L, T I)):

Prog ::= Program id; Blk.

Blk ∈ Block ::= TDs CDs { S return E }

TDs ∈ TDefs ::= ε | type TDL
TDL ∈ TDefLst::= t = T | t = T; TDL
CDs ∈ CDefs ::= ε | const CDL
CDL ∈ CDefLst::= id:T = E | id:T = E; CDL
E ∈ Exp ::= id | c | nil | () | val E | ref E | E(E1, . . . ,En) |

function(id1: T1, . . . ,idn: Tn): Tn+1 is Blk |

class (Ri, Rm) | new E | E⇐ m | E.l |

class inherits E modifies lj1 ,. . . , ljm
(Ri, Rm)

R ∈ Rec ::= {| l1:T1 = E1; . . . ; ln:Tn = En|}

S ∈ Stmt ::= nop | id := E | if E then { S1 } else { S2 } |

while E do { S } | S1; S2

A program in SOOL consists of a Program statement with the name of

the program, followed by a block. The block consists of a list of type and

constant definitions (which include definitions of functions and classes), and

finally by a statement and return expression surrounded by curly brackets.

For programs, the block will be the main program and will return the default

value nop. In function bodies, the return value can be any expression of the

appropriate type.

The symbol ε indicates that a construct may be replaced by an empty

string. In other words, the ε in type and constant definitions indicates that

these constructs are optional.

Expressions in SOOL consist of identifiers, constants, the keyword nil,

val expressions, ref expressions, function applications, function expres-

sions, class expressions, new expressions (for creating new objects), mes-

sage sends, extracting a labeled field, and subclass expressions. The keyword

nil represents an uninitialized object.

180 10 SOOL, a Simple Object-Oriented Language

We have already discussed ref and val expressions. As stated earlier, if x
is declared to be a variable of type T in the abbreviated language, then x will

be defined as a constant with type Ref T in the expanded language. It will

be initialized with an appropriate default value for the type. If T is an object

type then it will be initialized with nil. Variables of number types will be

initialized to the zero value of the type, characters to the “NUL” character,

and strings to the empty string. Functions will be initialized to functions

returning the default value of the result type.

For example, a variable declaration of the form

x:Integer;

will be transformed into the constant definition

x:Ref Integer = ref 0;

Thus x is initialized to be a reference to a location that initially holds 0.

Assignment statements can update the value held (referred to) by x, but

do not change the reference (location) itself. Hence it may be included in

with the other constant definitions.

Function applications consist of a function expression followed by the list

of actual parameters. Function expressions contain a list of formal parame-

ters and their types, the return type (which is Command for procedures), and

the function body.

Class expressions contain a record of initial values of instance variables

and a record of method definitions. Subclass expressions differ from class

expressions by including the superclass and a list of methods that are to be

overridden by the subclass. “New” expressions contain the class that is used

as a template to generate a new object.

Message sends include the target object and the name of the message. Re-

call that we use ⇐ to distinguish message sends from accesses to instance

variables, which use the “.” notation. Sending a message to nil should re-

sult in a run-time error. Labelled field projection normally appears only in

the bodies of method expressions. It typically appears in the form self.x,

where x is the name of an instance variable of the class.

The statements of the language include nop, assignment statements, if-

then-else expressions, while loops, and sequencing of statements. The ex-

pression nop represents a statement that has no effect (a “no op” or “skip”).

Two keywords of the language do not appear in the grammar above. They

are self, a name for the object currently executing a method, and close, a

10.2 Syntax and type-checking rules 181

function used to convert the type of self in order to hide the instance vari-

ables. We do not introduce them as constants because they may appear only

inside method definitions, and cannot be assigned types independently of

those contexts. In particular their meanings will vary depending on the con-

text. To be consistent with our type-checking rules presented below, these

keywords will instead be introduced as “bound” identifiers. The type of

self will always be the “visible” object type generated by the class defi-

nition that contains it. Recall this is necessary so that access is allowed to

instance variables.

We have not yet discussed the close keyword. Its sole purpose is to con-

vert objects of type VisObjectType (IVref ,M) to type ObjectType M once

we no longer need access to instance variables. If the value of self is pro-

vided outside of the class definition, either by returning it from a method or

using it as a parameter in another method, the instance variables should no

longer be accessible. In particular, we do not wish to have either the return

type or the parameter type of a method be a visible object type that includes

the types of instance variables.

Thus, before passing self as a parameter or returning it from a method,

we will apply close in order to convert it to an object type. As with val,

the abbreviated form of the language will not require the programmer to in-

sert applications of close, instead they will automatically be inserted where

needed.

10.2.2 Examples

Figure 10.3 contains a very simple example of a complete program in SOOL.

It defines a Point class, creates an object from Point, and moves it. It uses

the syntax abbreviations that allow the program to look more like it was

written in a typical object-oriented language. Notice that we do not require

the section headings type and const, and variable declarations are written

in a form similar to those found in most languages.

If we remove all of the abbreviations, we get the program in Figure 10.4.

For this program, the syntax is defined exactly by the context-free grammar

given in the previous section.

We have not yet discussed constructors for classes. We will omit construc-

tors in SOOL, replacing them by functions that return classes. In the lan-

guage with abbreviations we will write these as parameterized classes, but

these can be replaced with functions returning classes.

In Figure 10.5, a variation of the program PointExample from Figure

182 10 SOOL, a Simple Object-Oriented Language

Program PointExample;

PointType = ObjectType {
move:Integer × Integer → Command;
getx:Void → Integer;
gety:Void → Integer

};

class Point {
x:Integer = 0;
y:Integer = 0;
function move(dx:Integer,dy:Integer): Command is
{

x := x + dx;
y := y + dy }

function getx(): Integer is { return x }
function gety(): Integer is { return y }

};

pt: PointType;

{
pt := new Point;
pt ⇐ move(3,2)

}

Figure 10.3 PointExample program in language with abbreviations.

10.3 illustrates the use of parameterized classes. The class PPoint takes two

integers as parameters. The two integer parameters are used to initialize the

instance variables x and y.

In Figure 10.6 we remove the abbreviations to reveal the parameterized

class to be a function returning a class. In the assignment to pt in the main

program, the application of PPoint to the arguments 2 and 7 has higher

priority than the new operator.

10.2 Syntax and type-checking rules 183

Program PointExample;
type

PointType = ObjectType {|

move:Integer × Integer → Command;
getx:Void → Integer;
gety:Void → Integer

|};
PtClassType = ClassType({|

x:Integer;
y:Integer

|}, {|

move:Integer × Integer → Command;
getx:Void → Integer;
gety:Void → Integer

|});
const

Point:PtClassType = class({|
x:Integer = 0;
y:Integer = 0;

|}, {|

move:Integer × Integer → Command =
function(dx:Integer, dy:Integer): Command is {
self.x := (val self.x) + dx;
self.y := (val self.y) + dy;
return nop };

getx:Void → Integer = function(): Integer is {
return val self.x };

gety:Void → Integer = function(): Integer is {
return val self.y };

|});
pt: Ref PointType = ref nil;

{
pt := new Point;
pt ⇐ move(3,2);
return nop

}

Figure 10.4 PointExample program in language without abbreviations.

184 10 SOOL, a Simple Object-Oriented Language

Program PPointExample;

...

class PPoint(x0:Integer, y0:Integer) {
x:Integer = x0;
y:Integer = y0;
...

};

pt: PointType;

{
pt := new PPoint(2,7);
pt ⇐ move(3,2)

}

Figure 10.5 Parameterized Point class in language with abbreviations.

10.2.3 Type-checking rules

Most programming languages do not provide explicit formal rules for stati-

cally type-checking programs to the programmer. Instead they are typically

implicit in the language definition and then in the code of compilers. How-

ever, these rules are not difficult to formulate. As in the typed lambda calcu-

lus, the type-checking rules can be given inductively based on the produc-

tions of the context-free grammar that generates the language. In this section

we provide the formal type-checking rules for SOOL.

As in the typed lambda calculus, the type checking rules require informa-

tion about the types of free identifiers in an expression and information about

the meaning of type identifiers. The static type environment E associates ex-

pression identifiers with types.

Definition 10.2.3 A static type environment, E , is a finite set of associations

between identifiers and type expressions of the form x: T, where each x is unique in

E and T is a type. If the relation x:T ∈ E , then we sometimes write E(x) = T.

An important difference between SOOL and the typed lambda calculus

is that SOOL can include type definitions. These definitions are recorded

10.2 Syntax and type-checking rules 185

Program PPointExample;

type
...

const

PPoint:Integer × Integer → PtClassType =
function(x0:Integer,y0:Integer): PtClassType is {

return class({|
x:Integer = x0;
y:Integer = y0;

|}, {|

...
|})}

pt:Ref PointType = ref nil;

{
pt := new PPoint(2,7);
pt ⇐ move(3,2);
return nop

}

Figure 10.6 Parameterized Point class in language without abbreviations.

for type checking purposes in a type constraint system that associates type

identifiers with their definitions. That way the identifiers can be replaced by

their definitions wherever necessary.

Definition 10.2.4 Relations of the form t = T, where t is a type identifier and T is

a type expression, are said to be type definitions. A type constraint system, C, isTYPE CONSTRAINT

SYSTEM defined as follows:

1. The empty set, ∅, is a type constraint system.

2. If C is a type constraint system and t is a type identifier that does not appear in

C or T, then C ∪ {t = T} is a type constraint system.

186 10 SOOL, a Simple Object-Oriented Language

For example, in type checking the body of the program PointExample, C

would contain type definitions for both PointType and PtClassType.

Recall that a type constraint system for the polymorphic lambda calculus

kept track of subtyping assumptions rather than type definitions. We re-

tain the same name here because we will add subtyping definitions to type

constraint systems when we add polymorphism to the language.

The function C(T) returns the type expression formed by replacing all type

identifiers in T by their definitions in C (recursively, if necessary).

Definition 10.2.5 C(T), for T a type expression, is defined inductively as follows:C(T)

1. If t is a type identifier, then C(t) = C(T) if (t = T) ∈ C,

otherwise C(t) = t.

2. If C is a type constant, then C(C) = C.

3. C(T1 × . . .× Tn → Tn+1) = C(T1)× . . .× C(Tn) → C(Tn+1).

4. C(RefT) = RefC(T).

5. C(ObjectType RT) = ObjectType C(RT).

6. C(VisObjectType (RTi, RTm)) = VisObjectType (C(RTi), C(RTm)).

7. C(ClassType (RTi, RTm)) = ClassType (C(RTi), C(RTm)) .

8. C({| l1:T1; . . . ; ln:Tn |}) = {| l1:C(T1); . . . ; ln: C(Tn) |}

The function C(T) is guaranteed to terminate because the restrictions in

clause (2) of the definition of C rule out recursive (or mutually recursive)

type definitions. If all free identifiers of T are contained in the domain of

C, then C(T) will be a type expression with no free identifiers. A recursive

definition is necessary because type definitions occurring later in a program

may use type identifiers defined earlier.

We begin by introducing rules that process declarations. Processing a type

or constant definition or variable declaration results in adding type informa-

tion about the new identifiers introduced into the type constraint system, C,

or type environment, E .

The symbol � is used to separate a declaration in SOOL from the resulting

constraint system and type environment. A judgement of the form C, E `JUDGEMENT

Dec � C′, E ′ asserts that, under the assumptions in C and E , processing the

declaration Dec results in an enhanced type constraint system, C’, and type

10.2 Syntax and type-checking rules 187

environment, E ’. This notation makes it clear that the result of processing a

declaration is changes to the type constraint system and type environment.

The processing rules for declarations are written similarly to the type-

checking rules for the lambda calculus given in Chapter 8:

AxiomName C, E ` Dec � C ′, E ′

if the rule is not dependent on hypotheses, or

RuleName
C, E ` Dec1 � C1, E1, . . . , Cn−1, En−1 ` Decn � Cn, En

C, E ` Dec � Cn, En

,

where the conclusion is written below the line, and the hypotheses are above

the line. Typically, the expressions appearing in judgements above the line in

rules are subexpressions of the expressions appearing in judgements below

the line.

We read the rules starting from the bottom and then proceeding from left

to right across the top. For example, the sample rule can be read as stating,

“from the type assumptions in C and E , processing Dec results in a richer

collection of type assumptions Cn, En, if processing Dec1 from C and E results

in C1, E1, . . . , and processing Decn from Cn−1, En−1 results in Cn, En.”

The type-checking rules for declarations can be found in Figure 10.7. They

are relatively straightforward. By rule TypeDef, processing a type definition

results in adding the definition to C, but no changes to the type environment,

E . In contrast, rule ConstDef indicates that processing a constant declaration

results in adding the constant name and its type to the type environment, but

no change to the type constraint system, C. A list of type or constant declara-

tions is processed by processing the first declaration to get an enriched type

environment, and then processing the rest of the declarations recursively to

get the final type environment.

Type-checking rules for non-declarations are written similarly. A judge-

ment of the form C, E ` exp: T asserts that, under the type assumptions in

C, E , the expression exp has type T. We introduce a special notation to make

writing type-checking rules easier. If RType is a record type of the form

{|x1: T1; . . . ;xn: Tn|}, we let RTyperef = {|x1: Ref T1; . . . ;xn: Ref Tn|}.

We will give type-checking rules for each of the other syntactic categories

of SOOL. We start by providing the type-checking rules for expressions in

Figure 10.8.

Most of these rules are straightforward. By rule Identifier, an identifier can

be deduced to have the type that is specified for it in the type environment,

188 10 SOOL, a Simple Object-Oriented Language

TypeSec
C, E ` TDefLst � C′, E ′

C, E ` type TDefLst � C′, E ′

TypeDefLst
C, E ` t = T � C1, E1 C1, E1 ` TDefLst � C2, E2

C, E ` t = T; TDefLst � C2, E2

TypeDef C, E ` t = T � C ∪ {t = T}, E if t /∈ dom(C)

ConstSec
C, E ` CDefLst � C′, E ′

C, E ` const CDefLst � C′, E ′

ConstDefList
C, E ` id: T = E � C, E1 C, E1 ` CDefLst � C, E2

C, E ` id: T = E; CDefLst � C, E2

ConstDef
C, E ` E: T id /∈ dom(E)

C, E ` id: T = E � C, E ∪ {id: T}

Figure 10.7 Type checking rules for declarations.

E . In reporting the type of the identifier, all of the type identifiers in the type

are replaced by their definitions in C. This is done by writing the resulting

type as C(T). Because all user-introduced names will be replaced by their

definitions during type-checking, SOOL uses structural rather than name

equivalence of types [Lou93].

By rule Const, built-in constants are assigned the type that is provided in

the language definition. The expression () is the only value of type Void.

The expression nil is unusual in that it can have any object type. Which

type it is assigned will depend on context. If E has type T, then ref E is a

reference to E, and hence has type Ref T. If E has type Ref T, i.e., is a variable

holding values of type T, then val E has type T.

Type checking function definitions is only a bit more complicated. By the

Function rule, a function has type T1 × . . .× Tn → Tn+1 iff the body has type

Tn+1 under the added assumptions (in E) that the parameters have types T1

through Tn. The assumption on the types of formal parameters is necessary

since the function body may involve the formal parameters. Similarly if a

function has type T1 × . . . × Tn → Tn+1, and the actual parameters have

types T1 through Tn, the Application rule indicates that the result of applying

the function to the actual parameters has type Tn+1.

10.2 Syntax and type-checking rules 189

Identifier C, E ∪ {id: T} ` id: C(T)

Constant C, E ` c: C

where C is the pre-assigned type for built-in constant c.

Void C, E ` (): Void

Nil C, E ` nil: ObjectType M

Value
C, E ` E: Ref T

C, E ` val E: T

Function
C, E ∪ {id1: T1, . . . ,idn: Tn} ` Block: Tn+1

C, E ` function(id1: T1, . . . ,idn: Tn):Tn+1 is Block:

T1 × . . .× Tn → Tn+1

Application
C, E ` E: T1 × . . .× Tn → Tn+1, C, E ` E1: T1, . . . , C, E ` En: Tn

C, E ` E(E1, . . . ,En):Tn+1

Reference
C, E ` E:T

C, E ` ref E: Ref T

Class
C, E ` inst: IV, C′, E ′ ` meth: M

C, E ` class (inst,meth): ClassType (IV,M)

where

• C′ = C ∪ {SelfType = VisObjectType (IVref ,M)},

• E ′ = E∪{self: SelfType, close: SelfType→ ObjectType M}, and

• SelfType does not occur in IV or M.

New
C, E ` E: ClassType (IV,M)

C, E ` new E: ObjectType M

Message
C, E ` E: ObjectType {|m1: T1, . . . ,mn: Tn|}

C, E ` E⇐ mi: Ti

Figure 10.8 Type-checking rules for expressions of SOOL, part 1.

190 10 SOOL, a Simple Object-Oriented Language

The type checking of classes is more challenging. A class of the form

class (inst,meth) has type ClassType (IV, M), if two conditions hold.

First, the record of instance variables, inst, must have type IV. Second, the

record of methods, meth, must have type M.

There is a complication, however. Because method bodies may contain oc-

currences of self, we need to type check methods in a context that allows us

to assign a type to all expressions involving self. We assign the type Self-
Type to self, where SelfType = VisObjectType (IVref , M). Recall that

the type expression IVref represents a record type formed from IV by adding

Ref before the type of each field type. That is, if IV = {l1:T1; . . . ;ln:Tn},

then IVref = {l1:Ref T1; . . . ; ln:Ref Tn}.

While inst with type IV is the record of initial values of instance vari-

ables, the type SelfType of self includes the types of the instance variables

themselves. That is, if x is an instance variable and the class contains an ini-

tial value of x of type T, then the corresponding type in the visible object type

is Ref T.

Because self will be assigned type SelfType in E , we will be able to

type check expressions involving sending messages to self and extracting

instance values from self inside the bodies of methods. (The type checking

rules for these operations will be introduced in the next figure.) As discussed

earlier, close is introduced as a function to convert values (like self) from

SelfType to ObjectType M. Its typing is inserted into E ’ in order to type

check the bodies of methods.

Applying rule Class to type check a class definition requires that we know

the types of the instance variables and methods before we begin type check-

ing, because this information must be added to C and E when type checking

methods of the class. Our syntax for classes ensures that each instance vari-

able and method definition inside a class does appear with its type informa-

tion, so no difficulties arise with having to guess what these types might be

if inst and meth are written as record expressions. However it is possible

that inst or meth could be provided in some other way, e.g., as a formal pa-

rameter or the value of a variable, so that we only know a type, rather than

the most explicit type.

For example, we might only have partial information on the instance vari-

ables or methods in type-checking an expression. Suppose m is a method that

is never referenced in any of the other methods of the class, and let M’ be the

type of the record consisting of all of the methods of the class aside from m.

We could then type check the methods under the assumption that Self-
Type= VisObjectType (IVref , M’) rather than VisObjectType (IVref , M).

10.2 Syntax and type-checking rules 191

If the type checking succeeds, then the resulting type of the class would be

ClassType (IV, M’) rather than ClassType (IV, M) .

Of course the type of objects generated from the class with this typing

would be ObjectType M’ <: ObjectType M. Thus there is little advan-

tage to obtaining a weaker type for the class. As a result, a type-checking

algorithm will normally deduce the most specific type possible for the class.

Most languages do not allow a programmer to pass a record of methods or

even an individual method into a class. Thus this issue rarely arises.

Finally, note the restriction that SelfType may not occur in the types of

either instance variables or methods. “Visible object types” are not really part

of SOOL, they are simply introduced as an aid in type-checking programs.

As a result it may not appear explicitly anywhere in a program, though it is

used when type checking expressions involving self.

Expressions of the form new E generate new objects from a class. The

new object has an object type with methods corresponding to those given

in the class type of E. By rules Message, a message send has the type of the

corresponding method of the object type.

The type-checking rules for subclasses, records, and blocks are given in

Figure 10.9.

The type-checking rule for subclasses is longer than any we have seen so

far, but it is simpler than it may first appear. Recall from Chapter 6 that a

subclass may add new instance variables and methods, but that the types

of instance variables may not be changed, and that the types of overrid-

den methods may only be replaced by subtypes. Thus parameters may only

change in a contravariant way, and return types in a covariant way.

As a result, to type-check the expression

class inherits E modifies li1 , . . . ,lim
(inst,meth),

we must first determine the type of superclass, E, the new instance variables

in inst, and the new methods in meth. We also must ensure that the names

of the new instance variables do not overlap with those of E, and that if any

of the new method names overlap with those of E, then the new types in the

subclass will be subtypes of those for the superclass E. (We do not bother to

check whether instance variable and method identifiers overlap since they

are referred to in different ways.)

If the type of the subclass is expected to be ClassType (IV,M), then we de-

termine the types of the new methods under the assumption that the type of

self is SelfType = VisObjectType (IVref ,M), and that the type of close
is SelfType→ ObjectType M, as with the type checking rule for classes.

192 10 SOOL, a Simple Object-Oriented Language

Subclass

C, E ` E: ClassType (IVsup,Msup),

C, E ` inst: IVsub, C′, E ′ ` meth: Msub

C, E ` class inherits E modifies li1 , . . . ,lim

(inst,meth): ClassType (IV,M)

where

• IV = IVsup ⊕ IVsub and M = Msup ⊕ Msub,

• there is no overlap in the labels occurring in IVsup and IVsub,

• the overlapping labels in Msup and Msub are exactly li1 , . . . ,lim
, and the

type of each lij
in Msub is a subtype of the type of the same label in Msup,

• C′ = C ∪ {SelfType = VisObjectType (IVref ,M)},

• E ′ = E∪{self: SelfType, close: SelfType→ ObjectType M}, and

• SelfType does not occur in IV or M.

Inst Vble
C, E ` E: VisObjectType (IVR,M)

C, E ` E.lk: Tk

where IVR = {| l1: T1, . . . ,ln: Tn|} and 1 ≤ k ≤ n.

VisObj Message
C, E ` E: VisObjectType (IVR,M)

C, E ` E⇐ mj : Uj

where M = {| m1: U1, . . . ,mk: Uk|} and 1 ≤ j ≤ k.

Record
C, E ` Ei: Ti, for 1 ≤ i ≤ n

C, E ` {| l1: T1 = E1, . . . ,ln: Tn = En|}: {| l1: T1, . . . ,ln: Tn|}

Block

C, E ` TDefs � C1, E , C1, E ` CDefs � C1, E1,

C1, E1 ` S: Command, C1, E1 ` E: T

C, E ` TDefs CDefs { S return E; }: T

where T does not contain any type identifiers defined in TDefs.

Type Abbrev
C, E ` E: C(T)

C, E ` E: T

Figure 10.9 Type-checking rules for expressions of SOOL, part 2.

10.2 Syntax and type-checking rules 193

The notation R ⊕ R’ represents the combination of two record types. The

result is a record type with all of the fields of both record types. If there

are overlapping labels, then the type associated with each such label in the

result is the corresponding type from R’. Thus we can think of ⊕ as a right

dominant operation that combines record types.

The next two rules provide type-checking rules for message sends and in-

stance variable extraction from elements of type VisObjectType (IVR,M).

Recall that the type of self in type checking methods in classes and sub-

classes is of the form VisObjectType (IVR,M). The result of extracting an

instance variable has the same type as the corresponding field of the type of

the record of instance variables. The type checking rule for message sends

to visible object types is essentially the same as for object types and is based

only on the type of the methods.

The type of a record, E, is determined by the types associated with the

individual fields. Notice that record expressions include type expressions

along with the values for each field.

A block consists of the declarations and body of either a program or func-

tion. By rule Block, it is type checked by processing the declarations to obtain

a new type environment, which is then used to type check the body and re-

turn expression. The body should be a statement, and the type of the return

expression determines the type of the block. The type of the block should

not involve any local type definitions as they will not be visible outside of

the scope of the block.

By using the rule Identifier, we end up typing expressions by first removing

all user-introduced type identifiers. That is, when x:T is included in E , we

assigned x the type C(T) rather than just T. However, as a convenience, we

would also like to report the types of expressions with type expressions that

use these abbreviations. By rule Type Abbrev, we can provide an expression

with a type expression involving abbreviations once we determine that the

expression has the type obtained by removing the abbreviations.

Figure 10.10 contains type-checking rules for statements. Recall that well-

typed statements have type Command.

The special constant, nop, is a command, by rule No Op. By rule Assn, an

assignment statement is well-typed if the type of the left side is a reference

to the type of the expression appearing on the right side. If-then-else
and while statements are well-typed if the guard expressions have type

Boolean and the component statements are themselves well-typed. Indi-

vidual statements in statement lists should be well-typed. However, unlike

the lambda calculus, we do not allow non-statements, i.e., expressions with

194 10 SOOL, a Simple Object-Oriented Language

No Op C, E ` nop: Command

Assn
C, E ` id: Ref T, C, E ` E: T

C, E ` id: = E: Command

Cond

C, E ` E: Boolean,

C, E ` S1: Command, C, E ` S2: Command

C, E ` if E then { S1 } else { S2 }: Command

While
C, E ` E: Boolean, C, E ` S: Command

C, E ` while E do { S }: Command

StmtList
C, E ` S1: Command, C, E ` S2: Command

C, E ` S1; S2: Command

Program
C, E ` Block: Command

C, E ` Program id; Block. : Command

Figure 10.10 Type-checking rules for statements of SOOL.

type different from Command, to occur in statement lists. Finally, a program

is well-typed if the block it contains is well-typed.

We have now defined type-checking rules for the complete language, but

we have not yet mentioned subtyping. Rather than using the very simple

invariant subtyping rules used in Java and early versions of C++, we instead

use the more general rules discussed in Chapter 5. The SOOL subtyping

rules can be found in Figure 10.11.

Because C does not contain subtyping assumptions, we need C only to ex-

pand user-defined type definitions. Rule TypeDef <: specifies that to deter-

mine if two types are subtypes under the assumptions in C, simply expand

the type definitions and determine whether the expanded types are subtypes

using no assumptions.

The remaining subtyping rules make no direct use of C. Rule Reflex <:
specifies that a type is always a subtype of itself, while rule Trans <: as-

serts that subtyping is closed under transitivity. Subtyping for functions is

covariant in the argument type and contravariant in the argument types by

rule Function <: , just as we would expect based on our earlier discussions of

subtyping for function types in Section 5.1.2.

10.2 Syntax and type-checking rules 195

TypeDef <:
∅ ` C(S) <: C(T)

C ` S<: T

Reflex <: C ` S<: S

Trans <:
C ` S<: T, C ` T<: U

C ` S<: U

Function <:

C ` Ti <: Si, for 1 ≤ i ≤ n,

C ` Sn+1 <: Tn+1

C ` S1 × . . .× Sn → Sn+1 <: T1 × . . .× Tn → Tn+1

Record <:
m ≤ n and C ` Si <: Ti for all 1 ≤ i ≤ m

C ` {| l1: S1, . . . ,ln: Sn|}<: {| l1: T1, . . . ,lm: Tm|}

Object <:
C ` RType’<: RType

C ` ObjectType RType’<: ObjectType RType

Subsumption
C, E ` E: S, C ` S<: T

C, E ` E: T

Figure 10.11 Subtyping rules for SOOL.

Rule Record <: indicates that record subtyping includes both width and

depth subtyping. Finally, rule Object <: specifies that two object types are

subtypes if the types of their records of methods are subtypes.

The last rule, Subsumption, is actually a type-checking rule rather than a

subtyping rule. It states that if an expression has a type, then it can also be

assigned any supertype of that type. In Chapter 2 we defined types Color-
CellType and CellType where ColorCellType <: CellType. If col-
orCell has type ColorCellType, then by the Subsumption rule it also has

type CellType.

10.2.4 A type checking example

In the previous section we presented a number of formal type-checking rules

for SOOL. In this section we present an example showing how these rules

can be used to type-check SOOL programs. At the end of the section we in-

196 10 SOOL, a Simple Object-Oriented Language

clude a brief discussion of how the type-checking rules can be used to create

a type-checking algorithm for SOOL.

We show how to use the type-checking rules by verifying that the program

PointExample in Figure 10.4 is type-correct. We start with the program as a

whole, and with a type constraint system and type environment, C0, E0, that

are both empty.

It follows from the Program rule in Figure 10.10 that the program as a whole

is well-typed iff its block has type Command. Looking back at Figure 10.9, we

see that a block is type-checked by processing the type and constant defini-

tions to get an enriched type constraint system and type environment. Then

the body of the block is type-checked to make sure that it is well-typed. Fi-

nally the type of the entire block is the type of the return expression. In this

case the return expression is nop, which by rule No Op has type Command.

Thus the block as a whole will be well-typed if we can first successfully type-

check the constant definitions to obtain an enriched type environment, and

then can use that enriched type environment to ensure the body of the block

is well-typed.

There are two type definitions in the program. By the type-checking rules,

both PointType with its definition, and PtClassType with its definition

are added to C0, resulting in

C1 = C0 ∪ {PointType = ObjectType {| . . . |},

PtClassType = ClassType (. . .)}

There are only two constant definitions in the program. The first is of the

constant Point, which is defined to be a class of type PtClassType. We

must show that the class expression in Figure 10.12 has type PtClassType:

For simplicity, we will use the abbreviations:

PIV = {| x: Integer;y: Integer |}
PIVR = {| x: Ref Integer;y: Ref Integer |}
PM = {| move: Integer× Integer→ Command;

getx: Void→ Integer;

gety: Void→ Integer |}

We begin by showing that

C1, E0 ` {| x: Integer = 0; y: Integer = 0 |}: PIV.

10.2 Syntax and type-checking rules 197

class({|
x:Integer = 0;
y:Integer = 0;

|}, {|

move:Integer × Integer → Command =
function(dx:Integer, dy:Integer): Command is

{ self.x := (val self.x) + dx;
self.y := (val self.y) + dy;
return nop};

getx:Void → Integer =
function(): Integer is

{ return val self.x };

gety:Void → Integer = function(): Integer is
{ return val self.y };

|});

Figure 10.12 Class definition from PointExample.

But this is easy as the Constant rule implies that C1, E0 ` 0: Integer.1 The

desired typing of the record of instance variables follows from rule Record.

We must next show that the record of methods in Point has the type PM
under the type assumption

E1 = E0 ∪ {self: SelfType, close: SelfType→ ObjectType PM}

and type constraint system

C2 = C1 ∪ {SelfType = VisObjectType (PIVR,PM)}.

By the Record rule, it is sufficient to show that each individual method has

the appropriate type. We will only type check the movemethod, as the others

are similar, but simpler.

We must show that the function expression,

function(dx:Integer, dy:Integer): Command is {

1. We did not list all constants of the language in EC, but instead assume familiar constants (like

numerals) have the obvious types.

198 10 SOOL, a Simple Object-Oriented Language

self.x := (val self.x) + dx;
self.y := (val self.y) + dy;
return nop }

has type Integer× Integer→ Command under assumption C2, E1.

We type check the function using the Function rule by checking the body

under type constraint C2 and type assumption

E2 = E1 ∪ {dx: Integer,dy: Integer}.

The first line of the function is an assignment. By rule Inst Vble and the as-

sumption on the type of self in E2, it follows that

C2, E2 ` self.x: Ref Integer.

By the Value rule, the type of val self.x is Integer. The type of dx is also

Integer by the Identifier rule, because dx:Integer is in E2.

At this point we must cheat a bit since we did not include a type-checking

rule for operations like “+”. The operation “+” should actually be written as a

prefix function Plus with type Integer×Integer→Integer. Then val
self.x + dx abbreviates Plus(val self.x, dx), which, by the Application

rule, has type Integer. Now the Assignment rule allows us to infer from

C2, E2 that statement

self.x := (val self.x) + dx;

has type Command, because the left side has type Ref Integer, and the right

side has type Integer. Showing the other assignment statement has type

Command is similar. By the rule StmtList, the sequence of the two assignments

also has type Command.

The expression nop has type Command by rule No Op, so by rule Block the

whole function body has type Command when typed with respect to C2, E2.

By rule Function, the function expression associated with method move has

type Integer× Integer→ Command when typed with C2, E1.

Similar arguments show that the other two method bodies have the de-

sired types using the assumptions in C2, E1. Hence the record of methods

has type PM under C2, E1. Finally the Class rule implies that the entire Point
body has type PtClassType. By rule ConstDef,

E3 = E0 ∪ {Point: PtClassType}

results from processing the definition of PointClass, starting with C1, E0.

The other definition in the program is

10.2 Syntax and type-checking rules 199

pt: Ref PointType = ref nil;

By rule Nil, nil can be assigned type PointType (this is the one place where

we use information about context in type checking). By rule Reference, ref
nil has type Ref PointType. Therefore by rule ConstDef,

E4 = E3 ∪ {pt: Ref PointType}

results from processing the definition of pt, starting with C1, E3.

By rules ConstSec and ConstDefList and the results of processing the two

constant definitions above, processing the const section of the program re-

sults in static type environment E4. We use this environment along with C1

to type check the body of the program.

The first assignment statement is well-typed because new Point has type

PointType by the New rule. The message send of pt ⇐ move has type

Integer×Integer→ Command by rule Message, and, by rule Application,

pt ⇐ move(3,2) has type Command. As before, nop has type Command
by rule No Op. Combining rules StmtList and Block, it follows that the block

consisting of the program declarations and code has type Command. Thus by

rule Program, the entire program is well-typed.

As the description above shows, type checking a program is fairly mechan-

ical. All constants are declared with their types, so we need only verify that

the definitions are of the appropriate types. The expressions representing

class and function definitions include sufficient type information in the ex-

pressions that the type can be extracted from the expression. For classes (and

subclasses) this information can be extracted from the types of the record

of instance variables and the record of methods. The types of individual

components of records are included in record expressions, so all necessary

type information can be extracted from those subexpressions. Then it is only

required to check that the subexpressions have the appropriate types.

Most of the other expressions have types that can be simply composed

from the types of their subexpressions. For example, the type of a function

application will always be the return type of the function, the type of an ex-

pression of the form val E is obtained by stripping the Ref off of the type of

E, etc. Identifiers’ types can be found in the type environment and constants’

types are predefined.

That really leaves only nil expressions as problematic. Their types may

depend on the context, as with the definition of pt in the sample program.

There it was necessary to look at the type declared with the constant in order

to determine which type nil should be assigned (it was PointType). We

200 10 SOOL, a Simple Object-Oriented Language

could get around this by creating a new type, Bottom, which is a subtype

of all object types, and give nil type Bottom. The Subsumption rule could

then be used to promote the type of nil to whatever object type is needed in

the context. We will forgo adding this new type and simply presume enough

information is available from context to allow us to infer an appropriate type

for nil.

10.3 Summary

In this chapter we provided a formal definition of the language SOOL via

a context-free grammar and type-checking rules. As noted earlier, we will

usually use an abbreviated version of the language that is closer to exist-

ing common object-oriented languages, as it will be easy to algorithmically

convert from the simplified language to the stricter formal language.

Simply providing a formal language definition and type-checking rules

does not guarantee that a statically typed language is type-safe. For exam-

ple, how do we know that at run time an expression of some type T will

actually hold a value of type T? How do we know that all message sends at

run time will be to objects that have methods that can execute in response to

the message?

We will address such questions after we have defined the semantics of

SOOL. In the next chapter, we begin our investigation of a translational

semantics for SOOL.

