MASTERMIND
IMPLEMENTED

4/4/17

Admin

Assignment 7

CS lunch today in Frank Blue Room

Miscellaneous SML

Assignment 3 revisited

2. [2 point] Write a function exactMatches that takes a secret code and a
guess and returns the number of exact matches. (We read the lists from left
to right. If one list is longer than the other, the trailing elements of the longer
list are ignored.)

exactMatches : ’’'a list -> '’a list -> int

new type equivalence: code -> code -> int

fun exactMatches secret guess =
length (List.filter
(fn (x,y) => x=y)
(ListPair.zip (secret, guess)));




4/4/17

Assignment 3 revisited

3. [3 points] a. Write a function countColors that takes a code and re-
turns a list with the number of pegs of each color. It is convenient to or-
der the el of the list ding to the ion of colors in
allColors. For example, countColors [Red,Blue,Yellow,Yellow]
returns [1,9,2,0,1,0].

countColors : Peg list -> int list
new type equivalence: code -> int list

fun countColors thelist =
map (fn ¢ => length (List.filter
(fn x => x=c)
thelist))
allColors;

Assignment 3 revisited

b. Write a function totalMatches that takes a secret code and a guess and
returns the number of matches—exact or inexact.

totalMatches : Peg list -> Peg list -> int
new type equivalence: code -> code -> int

Suggestion: Use countColors. The
number of Red matches between two lists is
the minimum of the Red-counts of the two
lists. If you know the number of matches
for each color, you can simply add them to
arrive at the total number of matches.

Assignment 3 revisited

b. Write a function totalMatches that takes a secret code and a guess and
returns the number of matches—exact or inexact.
totalMatches : Peg list -> Peg list -> int
new type equivalence: code -> code -> int

fun sum [] =0
| sum (x::Xs) = X + sum Xxs;

fun totalMatches secret guess =
sum (map Int.min

(ListPair.zip (countColors secret, countColors guess)));

Assignment 3 revisited

4. [1 point] Use results from previous problems to write a function matches
that takes the role of the codemaker. Given a secret code and a guess, the
function returns an ordered pair of integers—first the number of exact
matches and then the number of inexact matches.
matches : Peg list -> Peg list -> int * int
new type equivalence: code -> code -> response

fun matches secret guess =

let
val totalM = totalMatches secret guess;
val exactM = exactMatches secret guess;
in
(exactM, totalM - exactM)
end;




4/4/17

Assignment 3 revisited

Write a function isConsistent that takes a guess, a response, and a can-
didate code and returns a boolean value telling whether the candidate is
consistent with the guess and response.

isConsistent : Peg list -> int * int -> Peg list -> bool

new type equivalence: code -> response -> code -> bool

fun isConsistent g r ¢ = (matches g ¢) = r;

Assignment 3 revisited

6. (2 point] The next step in our strategy is to “thin out” a list of potential
candidates for the secret code. Write a function filterCodes that takes a
guess; a codemaker function, as described in Problem 4; and a prior list of
candidates. It returns a list of those candidates that are consistent with the
given guess and the response to it.
filterCodes : Peg list -> (Peg list -> int * int) ->
Peg list list -> Peg list list
new type equivalence: code -> codemaker -> code list -> code list

fun filterCodes guess f candidates =
List.filter (isConsistent guess (f guess)) candidates;




