

Admin

Assignment 6

Midterm reviews Tue \& Wed

- Will post sample questions soon

Assignment 7

Office hours end today at 3:40 (instead of 4)

RSA public key encryption

Choose a bit-length k
Choose two primes p and q which can be represented with at most k bits

Let $n=p q$ and $\varphi(n)=(p-1)(q-1)$
Find d such that $0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$
Find e such that de $\bmod \varphi(n)=1$
private key $=(d, n)$ and public key $=(e, n)$
encrypt $(m)=m^{e} \bmod n \quad \operatorname{decrypt}(z)=z^{d} \bmod n$

```
Cracking RSA
    Choose a bit-length k
    Choose two primes p and q which can be represented with at most k bits
    Let n=pq and }\varphi(n)=(p-1)(q-1
    Find d such that 0<d<n and gcd (d,\varphi(n))=1
    Find e such that de mod \varphi(n)=1
    private key = (d,n) and public key = (e,n)
    encrypt(m) = me modn decrypt(z)= zd}\operatorname{mod}
Say I maliciously intercept an encrypted message.
How could I decrypt it? (Note, you can also assume that we have
the public key (e, n).)
```


Cracking RSA

encrypt(m) $=m^{e} \bmod n$

Idea 1: undo the mod operation, i.e. $\bmod ^{-1}$ function

If we knew m^{e} and e , we could figure out m

Do you think this is possible?

Cracking RSA

encrypt(m) $=\mathrm{m}^{\mathrm{e}} \operatorname{modn}$

Idea 1: undo the mod operation, i.e. mod $^{-1}$ function

If we knew m^{e} and e , we could figure out m

Generally, no, if we don't know anything about the message.

The challenge is that the mod operator maps many, many numbers to a single value.

Security of RSA

$$
\begin{array}{ll}
\text { p: prime number } & \varphi(n)=(p-1)(q-1) \\
q: \text { prime number } & \mathrm{d}: 0<\mathrm{d}<\mathrm{n} \text { and } \operatorname{gcd}(\mathrm{d}, \varphi(n))=1 \\
\mathrm{n}=\mathrm{pq} & \mathrm{e}: \mathrm{de} \bmod \varphi(n)=1 \\
\text { private key } & (\mathrm{d}, \mathrm{n}) \\
\text { public key } \quad(\mathrm{e}, \mathrm{n})
\end{array}
$$

Assuming you can't break the encryption itself (i.e. you cannot decrypt an encrypted message without the private key)

How else might you try and figure out the encrypted message?

Security of RSA
$p:$ prime number $q:$ prime number $n=p q$ $\varphi(n)=(p-1)(q-1)$ $d: 0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$ private key \quad ($d, n) \quad$ public key \quad ((e, n)
Assuming you can't break the encryption itself (i.e. you cannot decrypt an encrypted message without the private key)
Idea 2: Try and figure out the private key!
How would you do this?

| Security of RSA |
| :--- | :--- |
| $p:$ prime number $\varphi(n)=(p-1)(q-1)$
 $q:$ prime number
 $n=p q$
 $d: 0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$
 private key $\quad(d, n)$ public key $\quad(e, n)$ |
| |
| How would you do figure out p and q ? |

Security of RSA

$\mathrm{p}:$ prime number	$\varphi(n)=(p-1)(q-1)$
$\mathrm{q}:$ prime number	$\mathrm{d}: 0<d<\mathrm{n}$ and $\operatorname{gcd}(d, \varphi(n))=1$
$\mathrm{n}=\mathrm{pq}$	e: de $\bmod \varphi(n)=1$
private key	(d, n)
public key $\quad(\mathrm{e}, \mathrm{n})$	

For every prime $p(2,3,5,7 \ldots)$:

- If $n \bmod p=0$ then $q=n / p$

Why do we know that this must be p and q ?

Security of RSA

$\mathrm{p}:$ prime number	$\varphi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$
$\mathrm{q}:$ prime number	$\mathrm{d}: 0<\mathrm{d}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{d}, \varphi(\mathrm{n}))=1$
$\mathrm{n}=\mathrm{pq}$	$\mathrm{e}: \operatorname{de\operatorname {mod}\varphi (\mathrm {n})=1}$
private key	(d, n)
public key $\quad(\mathrm{e}, \mathrm{n})$	

For every number $p(2,3,4,5,6,7 \ldots)$:

- If $n \bmod p=0$ then $q=n / p$
- With k bits we can represent numbers up to 2^{k}
- We only need to count up to sqrt $=\left(2^{k}\right)^{1 / 2}$
- Which is still $2^{k / 2}$
- For large k (e.g. 1024) this is a very big number!

Security of RSA

$\mathrm{p}:$ prime number $\varphi(n)=(p-1)(q-1)$ $q:$ prime number $n=p q$ $d: 0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$ e: demod $\varphi(n)=1$	
private key (d, n)	public key $\quad(e, n)$

For every number $p(2,3,4,5,6,7 \ldots)$:

- If $n \bmod p=0$ then $q=n / p$

How long does this take?
l.e. how many p do we need to check in the worst case assuming n has k bits?

Security of RSA

p: prime number $\varphi(n)=(p-1)(q-1)$ q: prime number $d: 0<d<n$ and $\operatorname{gcd}(d, \varphi(n))=1$ $n=$ pq e: de $\bmod \varphi(n)=1$	
private key	(d, n)
public key $\quad(e, n)$	

For every number $p(2,3,4,5,6,7 \ldots)$:

- If $n \bmod p=0$ then $q=n / p$

Currently, there are no known "efficient" methods for factoring a number into it's primes.
This is the key to why RSA works!

Finding primes
2. Choose two primes p and q which can be represented with at most k bits

Idea: pick a random number and see if it's prime

How do we check if a number is prime?

Implementing RSA
2. Choose two primes p and q which can be represented with at most k bits

Ideas?

Finding primes
2. Choose two primes p and q which can be
represented with at most k bits

Idea: pick a random number and see if it's prime
isPrime(num):
for $\mathrm{i}=2 \ldots$ sqrt(num)
if num $\% \mathrm{i}==0$:
return false
return true
If the number is k bits, how many numbers (worst case) might we need to examine?

Finding primes

Primality test for num:
pick a random number a
perform test(num, a)
if test fails: return false
if test passes: return true

If num is not prime, what are the chances that we incorrectly say num is a prime?

Finding primes

Primality test for num:
pick a random number a
perform test(num, a)
if test fails, num is not prime
if test passes, $1 / 2$ chance that num is prime

Does this help us?

Finding primes
Primality test for num:

- pick a random number a
- perform test(num, a)
- if test fails: return false
- if test passes: return true
$0.5(50 \%)$
Can we do any better?

Finding primes
Primality test for num:
- Repeat 2 times:
\quad pick a random number a
- perform test(num, a)
\quad if test fails: return false
return true
:---
incorrectly say num is a prime?

Finding primes

Primality test for num:
Repeat 3 times:
pick a random number a
perform test(num, a)
if test fails: return false
return true

If num is not prime, what are the chances that we incorrectly say num is a prime?

Finding primes

Primality test for num:
pick a random number a
perform test(num, a)
if test fails: return false
if test passes: return true
p(0.25)

- Half the time we catch it on the first test
- Of the remaining half, again, half (i.e. a quarter total) we catch it on the second test
- $1 / 4$ we don't catch it

Finding primes

Primality test for num:

Repeat 3 times:

pick a random number a
perform test(num, a)
if test fails: return false
return true
$p(1 / 8)$

Finding primes
Primality test for num:
- Repeat m times:
- pick a random number a
- perform test(num, a)
\quad if test fails: return false
return true
If num is not prime, what are the chances that we
incorrectly say num is a prime?

\quad Finding primes
\quad Primality test for num:
- Repeat m times:
\quad pick a random number a
\quadperform test(num, a) \quad if test fails: return false return true
$\mathrm{p}\left(1 / 2^{\mathrm{m}}\right)$
For example, $\mathrm{m}=20: \mathrm{p}\left(1 / 2^{20}\right)=\mathrm{p}(1 / 1,000,000)$

Finding primes

Fermat's little theorem: If p is a prime number, then for all integers a:
$a \equiv a^{p}(\bmod p)$
test(num, a):

- generate a random number $a<p$
- check if $a^{p} \bmod p=a$

Fermat's little theorem: If p is a prime number, then for all integers a:
$a \equiv a^{p}(\bmod p)$
How does this help us?

Implementing RSA
4. Find d such that $0<\mathrm{d}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{d}, \varphi(\mathrm{n}))=1$
5. Find e such that $\mathrm{de} \bmod \varphi(n)=1$

How do we do these steps?

Greatest Common Divisor

A more useful property:
two numbers are relatively prime (i.e. $\operatorname{gcd}(a, b)=1$)
iff there exists $a \mathrm{c}$ such that $\mathrm{a}^{*} \mathrm{c} \bmod \mathrm{b}=1$

What does iff mean?

Greatest Common Divisor
A more useful property: 1. If two numbers are relatively prime (i.e. $\operatorname{gcd}(a, b)=$ $1)$, then there exists $a c$ such that $a^{*} c \bmod b=1$
We're going to leverage this second part

[^0]Implementing RSA
4. Find d such that $0<\mathrm{d}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{d}, \varphi(\mathrm{n}))=1$

Find e such that de $\bmod \varphi(n)=1$

If there exists $a c$ such that $a^{*} c \bmod b=1$, then the two numbers are relatively prime (i.e. $\operatorname{gcd}(a, b)=1$)

To find d and e:

- pick a random $d, 0<d<n$
- try and find an e such that de $\bmod \varphi(n)=1$
- if none exists, try another d
- if one exists, we're done!
inversemod
* inversemod : cs52int \rightarrow cs52int \rightarrow cs52int option

Option type
Look at option.sml $\frac{\text { http: } / / w w w . c s . p o m o n a . e d u / ~ d k a u c h a k / c l a s s e s ~}{c}$ $\frac{\text { cs52/examples/option.sml }}{}$ option type has two constructors: - NONE (representing no value) SOME v (representing the value v)

case statement
case \quad pattern $1=>$ value
\| pattern $2=>$ value
\| pattern $3=>$ value
\ldots

Signing documents
$-\left(m^{e}\right)^{d}=m^{e d}=m(\bmod n)$
$-\operatorname{encrypt}(m,(e, n))=m^{e} \bmod n$
$-\operatorname{decrypt}(z,(d, n))=z^{d} \bmod n$
encrypt $(m,(d, n))=m^{d} \bmod n$

decrypt $\left(m^{d} \bmod n,(e, n)\right)$	$=\left(m^{d}\right)^{e} \bmod n$
	$=m^{\text {de }} \bmod n$
	$=m^{\text {ed }} \bmod n$
	$=m \quad$ (lf $m<n)$

Signing documents
Signing documents
If the message can be
decrypted with the public key
then the sender must have had
the private key
This is a way to digitally sign a
document!

Public key encryption

[^0]: Modular multiplicative inverse
 From Wikpedia, the free encyclopedia
 This aticle needs additional citations for verification. Please help improve this
 article by adding citations to reliable sources. Unsourced material may be challenged and removed. (March 2007)
 In modular arithmetic, the modular multiplicative inverse of an integer a modulo m is an integer x such that
 $a x \equiv 1 \quad(\bmod m)$.
 That is, it is the multiplicative inverse in the ring of integers modulo m. denoted \mathbb{Z}_{m}.
 Once defined, x may be noted a^{-1}, where the fact that the inversion is m-modular is implicit.
 The multiplicative inverse of a modulo m exists if and only if a and m are coprime (i.e., if $g c d(a, m)=1$). ${ }^{[1]}$ if the modular
 The multpicicative inverse of a modub m exists
 multipicative inverse of a modulo m exists, the operation of division by a
 inverse of a, which is in

 Known problem with known solutions

 For the assignment, l've provided you with a function: inversemod

