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LIST INDUCTION 
David Kauchak 
CS52 – Spring 2016 

Admin 

Assignment 5 
 
Assignment 6 
 
 

Today 

http://lavonhardison.com/tag/repetition/ 

List induction 

1.  State what you’re trying to prove! 
2.  State and prove the base case (often empty list) 
3.  Assume it’s true for sublists – inductive hypothesis 
4.  Show that it holds for the full list 
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List fact 

len (map f lst) = len lst 

What does this say? 
Does it make sense? 

List induction 

Prove: len (map f lst) = len lst 
1.  State what you’re trying to prove! 
2.  State and prove the base case (often empty list) 
3.  Assume it’s true for sublists – inductive hypothesis 
4.  Show that it holds for the full list 

Facts 

Base case:   
Want to prove: len (map f []) = len [] 

lst = [] 

Proof? 

Prove: len (map f lst) = len lst 

Facts 

Base case:   
Want to prove: len (map f []) = len [] 

lst = [] 

Prove: len (map f lst) = len lst 

definition of map len (map f []) = len ([]) 

= len [] definition of ( ) 
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Prove: len (map f lst) = len lst 

Inductive hypothesis:   
Want to prove: 

len (map f xs) = len xs 

len (map f (x::xs)) = len (x::xs) 

Proof? 

Inductive hypothesis:   
Want to prove: 

len (map f xs) = len xs 

len (map f (x::xs)) = len (x::xs) 

= 1 + len (map f xs)  

= 1 + len xs  

definition of map 

definition of len 

inductive hypothesis 

len (map f (x::xs)) =  len ((f x) :: (map f xs))  

= len (x::xs) definition of len 

Done! 

Some list “facts” 

What do they say? 
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Another list fact 

len (xlst @ ylst) = len xlst + len ylst 

What does this say? 
Does it make sense? 

1.  State what you’re trying to prove! 
2.  State and prove the base case (often empty list) 
3.  Assume it’s true for smaller lists – inductive hypothesis 
4.  Show that it holds for the current list 

Prove: len (xlst @ ylst) = len xlst + len ylst 

use induction on xlst 

Prove: len (xlst @ ylst) = len xlst + len ylst 

Base case:   
Want to prove: len ([] @ ylst) = len [] + len ylst  

xlst = [] 

Proof? 

Prove: len (xlst @ ylst) = len xlst + len ylst 

Base case:   
Want to prove: len ([] @ ylst) = len [] + len ylst  

xlst = [] 

len ([] @ ylst) = … = len [] + len ylist 

1.  start with left hand side 
2.  show a set of justified steps that derive the right hand size 
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Prove: len (xlst @ ylst) = len xlst + len ylst 

Base case:   
Want to prove: len ([] @ ylst) = len [] + len ylst  

xlst = [] 

len ([] @ ylst) = len ylst fact 1 

= len [] + len ylst    

= 0 + len ylst math 

definition of len 

Prove: len (xlst @ ylst) = len xlst + len ylst 

Inductive hypothesis:   
Want to prove: 

len (xs @ ylst) = len xs + len ylst 

len ((x::xs) @ ylst) = len (x::xs) + len ylst 

Prove: len (xlst @ ylst) = len xlst + len ylst 

Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst 

len ((x::xs) @ ylst) = 

len (xs @ ylst) = len xs + len ylst 

= len (x::xs) + len ylst 

Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst 

len ((x::xs) @ ylst) = 

len (xs @ ylst) = len xs + len ylst 

= len (x::xs) + len ylst 
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Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst 

len ((x::xs) @ ylst) = 

len (xs @ ylst) = len xs + len ylst 

= len (x::xs) + len ylst ? 

Inductive hypothesis:   
Want to prove: 

len (xs @ ylst) = len xs + len ylst 

len ((x::xs) @ ylst) = len (x::xs) + len ylst 

len ((x::xs) @ ylst) = len ( ([x]@xs) @ ylst )  fact 4 

= len ( [x] @ (xs @ ylst) )  fact 3 

= len ( x :: (xs @ ylst) )  fact 4 

= 1 + len (xs @ ylst)  definition of len 

= 1 + len xs + len ylst  inductive hypothesis 

= len (x::xs) + len ylst   definition of len 

Blast from the past 

What does the anonymous 
function do?  

Blast from the past 

Takes a value, x, and creates 
a tuple with u as the first 
element and x as the second 
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Blast from the past 

What does the map part of this function do? 

Blast from the past 

For each element in vl, creates a tuple (pair) 
with u as the first element and an element of 
vl as the second 

Blast from the past 

What is the type signature? 
What does this function do? 

Blast from the past 
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Blast from the past 

Name the actor and movie 

Blast from the past 

A property of cart 

len(cart ul vl) = (len ul) * (len vl) 

What does this say? 
Does it make sense? 

A property of cart 

Prove: len(cart ul vl) = (len ul) * (len vl) 

Proof by induction.  Which variable, ul or vl? 
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Base case:   
Want to prove: len (cart [] vl) = (len []) * (len vl) 

ulst = [] 

Proof? 

Prove: len(cart ul vl) = (len ul) * (len vl) 

Base case:   
Want to prove: len (cart [] vl) = (len []) * (len vl) 

ulst = [] 

Prove: len(cart ul vl) = (len ul) * (len vl) 

len (cart [] vl) = len [] definition of cart 

= 0 definition of len 

= (len []) * (len vl)   

= 0 * (len vl)  

definition of len 

math 

Inductive hypothesis:   
Want to prove: 

len (cart us vl) = (len us) * (len vl) 

len (cart (u::us) vl) = (len (u::us)) * (len vl) 

Prove: len(cart ul vl) = (len ul) * (len vl) 

Prove: len(cart ul vl) = (len ul) * (len vl) 

Want to prove: len (cart (u::us) vl) = (len (u::us)) * (len vl) 

len (cart (u::us) vl) =  = (len (u::us)) * (len vl) ? 

IH: len (cart us vl) = (len us) * (len vl) 
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len (cart (u::us) vl) =  len (map (fn x => (u,x)) vl) @ (cart us vl))   

IH: len (cart us vl) = (len us) * (len vl) 

len (cart (u::us) vl) = (len (u::us)) * (len vl) Want to prove: 

= len (vl) + len(cart us vl)   
“@” fact 

= len (vl) + (len us) * (len vl)   inductive hypothesis 

= (1 + (len us)) * (len vl)   math 

definition of cart 

= (len (u::us)) * (len vl)   definition of len 

= len (map (fn x => (u,x)) vl)) + len (cart us vl)   

“map” fact 

Quick refresher: datatypes 

Recursive datatype 

-  Defines a type variable for use in the datatype constructors 
-  Still just defines a new type called “binTree” 

Recursive datatype 

What is this? 
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Recursive datatype 

Binary Tree! 

‘a 

‘a binTree ‘a binTree 

A binary tree is a recursive 
data structure where each 
node in the tree consists of a 
value and then two other 
binary trees. 

Recursive datatype 

What does this look like? Node(Empty, 1, Empty); 

Recursive datatype 

Node(Empty, 1, Empty); 

1 

Empty Empty 

Recursive datatype 

What does this look like? 

Node(Node(Empty, 3, Node(Empty, 4, Empty)), 5, Node(Empty, 9, Empty)); 
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Recursive datatype 

5 

3 

Empty 

Node(Node(Empty, 3, Node(Empty, 4, Empty)), 5, Node(Empty, 9, Empty)); 

4 

Empty Empty 

9 

Empty Empty 

Recursive datatype 

What does this look like? 

Node(Node(Empty, “apple”, Node(Empty, “banana”, Empty)),  
        “carrot”,  
        Node(Empty, “rhubarb”, Empty)); 

Recursive datatype 

carrot 

apple 

Empty 

Node(Node(Empty, “apple”, Node(Empty, “banana”, Empty)),  
        “carrot”, Node(Empty, “rhubarb”, Empty)); 

banana 

Empty Empty 

rhubarb 

Empty Empty 

Facts about binary trees 

Counting elements in a tree N( ): 
N(Empty) =  

How many Nodes (i.e. values) are in 
an empty binary tree? 
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Facts about binary trees 

Counting elements in a tree N( ): 
N(Empty)      = 0 

Facts about binary trees 

Counting elements in a tree N( ): 
N(Empty)            = 0 

N(Node(u, elt, v)) =  

How many Nodes (i.e. values) are in a 
non-empty binary tree (stated 
recursively)? 

Facts about binary trees 

Counting elements in a tree N( ): 
N(Empty)            = 0 
 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

One element stored in this node plus 
the nodes in the left tree and the 
nodes in the right tree 

Leaves 

5 

3 

Empty 

Node(Node(Empty, 3, Node(Empty, 4, Empty)), 5, Node(Empty, 9, Empty)); 

4 

Empty Empty 

9 

Empty Empty 

A “leaf” is a Node at the bottom of the tree, i.e. 
Node(Empty, elt, Empty) 

Which are the leaves? 
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Leaves 

5 

3 

Empty 

Node(Node(Empty, 3, Node(Empty, 4, Empty)), 5, Node(Empty, 9, Empty)); 

4 

Empty Empty 

9 

Empty Empty 

A “leaf” is a Node at the bottom of the tree, i.e. 
Node(Empty, elt, Empty) 

Facts about binary trees 

Counting leaves in a tree L( ): 
L(Empty)                  =  
 
L((Empty, elt, Empty) =  
 
L(Node(u, elt, v)       = 

? 

Facts about binary trees 

Counting leaves in a tree L( ) : 
L(Empty)                  = 0  
 
L((Empty, elt, Empty) = 1 
 
L(Node(u, elt, v)       = L(u) + L(v) 

Facts about binary trees 

Counting Emptys in a tree E( ): 
E(Empty)            =  
 
E(Node(u, elt, v) = 

? 
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Facts about binary trees 

Counting Emptys in a tree E( ): 
E(Empty)            = 1 
 
E(Node(u, elt, v) = E(u) + E(v) 

Notation summarized 

!  N( ): number of elements/values in the tree 

!  L( ): number of leaves in the tree 

!  E( ): number of Empty nodes in the tree 

Tree induction 

1.  State what you’re trying to prove! 
2.  State and prove the base case(s)  

(often Empty and/or Leaf) 
3.  Assume it’s true for smaller subtrees – inductive hypothesis 
4.  Show that it holds for the full tree 

N(Empty)            = 0 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

E(Empty)            = 1 
E(Node(u, elt, v) = E(u) + E(v) 

L(Empty)                  = 0  
L((Empty, elt, Empty) = 1 
L(Node(u, elt, v)       = L(u) + L(v) 

N(t) = E(t) - 1 

What is this saying in English? 

N: number of nodes 
L: number of leaves 
E: number of Emptys 
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N(Empty)            = 0 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

E(Empty)            = 1 
E(Node(u, elt, v) = E(u) + E(v) 

L(Empty)                  = 0  
L((Empty, elt, Empty) = 1 
L(Node(u, elt, v)       = L(u) + L(v) 

N(t) = E(t) - 1 

Number of nodes/values is equal to the number of Emptys minus one 

N: number of nodes 
L: number of leaves 
E: number of Emptys 

5 

3 

Empty 4 

Empty Empty 

9 

Empty Empty 

Sanity check: is it right here? 

N(Empty)            = 0 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

E(Empty)            = 1 
E(Node(u, elt, v) = E(u) + E(v) 

L(Empty)                  = 0  
L((Empty, elt, Empty) = 1 
L(Node(u, elt, v)       = L(u) + L(v) 

N(t) = E(t) - 1 

N: number of nodes 
L: number of leaves 
E: number of Emptys 

5 

3 

Empty 4 

Empty Empty 

9 

Empty Empty 

4 nodes = 5 Emptys - 1 

Number of nodes/values is equal to the number of Emptys minus one 

N(Empty)            = 0 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

E(Empty)            = 1 
E(Node(u, elt, v) = E(u) + E(v) 

L(Empty)                  = 0  
L((Empty, elt, Empty) = 1 
L(Node(u, elt, v)       = L(u) + L(v) 

Prove: N(t) = E(t) - 1 
N: number of nodes 
L: number of leaves 
E: number of Emptys 

Base case:   
Want to prove: N(Empty) = E(Empty) - 1 

t = Empty 

Proof? 

N(Empty)            = 0 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

E(Empty)            = 1 
E(Node(u, elt, v) = E(u) + E(v) 

L(Empty)                  = 0  
L((Empty, elt, Empty) = 1 
L(Node(u, elt, v)       = L(u) + L(v) 

Prove: N(t) = E(t) - 1 
N: number of nodes 
L: number of leaves 
E: number of Emptys 

Base case:   
Want to prove: N(Empty) = E(Empty) - 1 

t = Empty 

N(Empty) =  0 

E(Empty)-1 = 1 - 1  
                 = 0 

“N” fact 

“E” fact 
math 



3/10/16	  

17	  

N(Empty)            = 0 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

E(Empty)            = 1 
E(Node(u, elt, v) = E(u) + E(v) 

L(Empty)                  = 0  
L((Empty, elt, Empty) = 1 
L(Node(u, elt, v)       = L(u) + L(v) 

Prove: N(t) = E(t) - 1 
N: number of nodes 
L: number of leaves 
E: number of Emptys 

Inductive hypotheses: 
   
Want to prove: 

N(u) = E(u) - 1 
N(v) = E(v) - 1 

N(Node(u, elt, v)) = E(Node(u, elt, v)) - 1 

(Relation holds for any subtree) 

N(Empty)            = 0 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

E(Empty)            = 1 
E(Node(u, elt, v) = E(u) + E(v) 

L(Empty)                  = 0  
L((Empty, elt, Empty) = 1 
L(Node(u, elt, v)       = L(u) + L(v) 

N: number of nodes 
L: number of leaves 
E: number of Emptys 

Want to prove: 

N(u) = E(u) - 1 
N(v) = E(v) - 1 

N(Node(u, elt, v)) = E(Node(u, elt, v)) - 1 

N(Node(u, elt, v)) = = E(Node(u, elt, v)) - 1 ? 

N(Empty)            = 0 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

E(Empty)            = 1 
E(Node(u, elt, v) = E(u) + E(v) 

L(Empty)                  = 0  
L((Empty, elt, Empty) = 1 
L(Node(u, elt, v)       = L(u) + L(v) 

N: number of nodes 
L: number of leaves 
E: number of Emptys 

Want to prove: 

N(u) = E(u) - 1 
N(v) = E(v) - 1 

N(Node(u, elt, v)) = E(Node(u, elt, v)) - 1 

N(Node(u, elt, v)) = 1 + N(u) + N(v) “N” fact 

= 1 + E(u) - 1 + E(v) - 1 inductive hypothesis 

= E(u) + E(v) - 1 math 

= E(Node(u, elt, v)) - 1 “E” fact 

Other interesting tree facts 

N(Empty)            = 0 
N(Node(u, elt, v)) = 1 + N(u) + N(v)  

E(Empty)            = 1 
E(Node(u, elt, v) = E(u) + E(v) 

L(Empty)                  = 0  
L((Empty, elt, Empty) = 1 
L(Node(u, elt, v)       = L(u) + L(v) 

N: number of nodes 
L: number of leaves 
E: number of Emptys 

N(t) = E(t) - 1 
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Summary of induction proofs 

Numbers: 2i
i=0

n

∑ = 2n+1 −1 i
i=1

n

∑ =
n(n+1)
2

Recurrence relations: 

count0 (k) =
k(k +1)
2

count1(k) = 2
k+1 − k − 2

Code equivalence: 
fibrec(n) = fibiter(n) 

len (map f xlst) = len xlst 
Induction on lists: 

len (xlst @ ylst) = len xlst + len ylst 

len(cart ul vl) = (len ul) * (len vl) 

Induction on trees: 
N(t) = E(t) - 1 

Be careful! 

Outline for a “good” proof by 
induction 
1. Prove:  what_to_prove 
 
2. Base case: the_base_case(s) 
   a. state what you’re trying to prove 
   b. show a step by step proof 
     with each step clearly justified 
 
3. Assume: the_inductive_hypothesis 
4. Show: what_you’re_trying_to_prove 
   step by step proof from left hand side deriving the right      
   hand side with each step clearly justified 


