

Admin
Assignment 5
Assignment 6

List induction

Base case: \quad lst $=[]$

Want to prove: \quad len $(\operatorname{map} \mathrm{f}[])=$ len []
Proof?

Prove: len (map $f \mid s t)=$ len $\mid s t$
fun len []$=0$
| len ($\mathrm{x}: \mathrm{:xs}$) $=1+$ len xs
fun map $f[\square=\square$
| map $f(x:: x s)=(f x)::($ map $f x s)$;
Facts

List induction

fun len []$=0$
| len $(x:: x s)=1+$ len $x s$
fun map $f[\square=[]$
I map $f(x:: x s)=(f x)::($ map $f x s)$;
Prove: len (map f Ist) $=$ len Ist

State what you're trying to prove!
2. State and prove the base case (often empty list)
3. Assume it's true for sublists - inductive hypothesis
4. Show that it holds for the full list

Base case: \quad Ist $=[]$
Want to prove: len (map $f[])=$ len []

$$
\begin{aligned}
\text { len }(\operatorname{map} f[]) & =\operatorname{len}([]) & & \text { definition of map } \\
& =\text { len }[] & & \text { definition of }()
\end{aligned}
$$

Prove: len (map f Ist) $=$ len Ist
fun len []$=0$
| len $(x:: x s)=1+$ len $x s$
fuи map $f[]=[]$
I map $f(x:: x s)=(f x)::($ map $f x s)$;

```
Inductive hypothesis: len (map fx ) \(=\) len xs
Want to prove: len (map \(f(x:: x s))=\operatorname{len}(x:: x s)\)
    Proof?
Prove: Ien (map \(f\) Ist) \(=\) len Ist
fun len []\(=0\)
    | len ( \(x:\) : \(x s\) ) \(=1+\) len \(x s\)
fun map \(f[]=[]\)
    1 map \(f(x:: x s)=(f x)::(\) map \(f x s)\);
```


$\operatorname{len}(\operatorname{map} f(x:: x s))=\operatorname{len}(x:: x s)$	
$\operatorname{len}(\operatorname{map} \mathrm{f}(\mathrm{x}:: \mathrm{xs}))=\operatorname{len}((\mathrm{f} x)::(\operatorname{map} \mathrm{f} x \mathrm{~s})$)	definition of map
$=1+\operatorname{len}(\operatorname{map} f x s)$	definition of len
$=1+$ len xs	inductive hypothesis
$=\operatorname{len}(\mathrm{x}:: \mathrm{xs}$)	definition of len
Done!	
$\begin{aligned} \text { fun len }[] & =0 \\ \text { \| len }(x:: x s) & =1+\text { len } x s \end{aligned}$	
$\begin{aligned} \text { fun map } f[] & =[] \\ \quad \text { \| map } f(x:: x s) & =(f x)::(\text { map } f x s) ; \end{aligned}$	

Some list "facts"

1. []$@ v 1=\mathrm{v} 1$
2. $u 1 @[]=u 1$
3. (u1@v1)@w1 = u1@(v1@w1)
4. [u]@us = u::us

Another list fact
len (xlst @ ylst) = len xlst + len ylst
What does this say? Does it make sense?

1. []$@ v\rceil=v\rceil$
2. $u 1 @[]=u 1$
3. (u1@v1)@w1 = u1@(v1@w1) use induction on xlst
4. [u]@us = u: :us

Prove: len (x|st @ ylst) = len x|st + len ylst

State what you're trying to prove!
2. State and prove the base case (often empty list)
3. Assume it's true for smaller lists - inductive hypothesis
4. Show that it holds for the current list


```
Base case: xlst = []
Want to prove: len ([] @ ylst) = len [] + len ylst
            len ([]@ ylst) = ... = len [] + len ylist
    1. start with left hand side
    2. show a set of justified steps that derive the right hand size
Prove: len (xlst @ ylst) = len x|st + len ylst
1. []@v1 = v>
2. u7@[] = u7
3. (ul@v1)@wl = ul@(v1@w1) fun len [] =0
4. [u]@us = u::us
```

```
    | len (x::xs) = 1 + len xs
```

```
    | len (x::xs) = 1 + len xs
```

$$
\begin{aligned}
& \text { Base case: } \quad \text { xlst }=[] \\
& \begin{array}{rll}
\text { Want to prove: } & \text { len }([] @ y \mid s t)= & \text { len }[]+\text { len } y l s t
\end{array} \\
& \begin{array}{rll}
\text { len }([] @ y \mid s t) & =\text { len ylst } & \text { fact } 1 \\
& =0+\text { len ylst } & \text { math } \\
& =\text { len }[]+\text { len ylst } & \text { definition of len }
\end{array}
\end{aligned}
$$

Prove: len (x|st @ ylst) = len $x|s t+l e n ~ y| s t ~$

1. []avy $=\mathrm{v}]$
2. $u 1 Q[]=u 1$
3. $(u l @ v 1)$ ewl $=u l @(v 1 @ w 1) \quad$ fun len $[\square=0$
4. $[u] @ u s=u:: u s$

Inductive hypothesis: len (xs @ ylst) = len xs + len ylst
Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst

Prove: len $(x|s t @ y| s t)=$ len $x \mid s t+$ len $y \mid s t$

Prove: len (xlst @ ylst) = len xlst + len ylst

1. []$@ v 1=v 1$
2. $u 1 @[]=u 1$
3. (ul@v1)@w1 =ul@(vi@w1) $\quad \begin{aligned} \text { fun len }[\square & =0 \\ \text { | len }(x:: x s) & =1\end{aligned}$
4. $[u] @ u s=u:: u s$

1 len (x::xs) = $1+$ len xs

Want to prove: len ((x::xs) @ y|st) = len (x::xs) + len ylst

len ((x::xs)@ylst)=	$=\text { len }(x:: x s)+\text { len } y \mid s t$
1. []$@ v 7=v 1$	len (xs@ ylst) = len $x s$ + len $y / s t$
2. $\mathbf{u} 1 @[]=u 7$	
3. (ul@v1)@w1 = u1@(v1@w1)	fun len $[\quad=0$
	len (x::xs) $=1+$ len $x s$

Want to prove: len ((x::xs)@ylst)=len (x::xs)+len ylst

Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst	
len ((x::xs) @ y 1 st) =	$=$ len ($\mathrm{x}:: \mathrm{xs}$) + len y / st
1. []$@ v 1=v]$ 2. $\mathbf{u} @[]=u 1$ 3. (ul@v1)@w1 = ul@(v1@w1) 4. $[u] @ u s=u:: u s$	Ien (xs @ ylst) = len xs + len ylst
	fun len $[\square=0$

Inductive hypothesis: len (xs @ ylst) = len xs + len ylst Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst		
len (($x:: \mathrm{xs}$) @ ylst) = len	xs) @ y lst)	fact 4
$=\mathrm{len}$	(xs @ ylst))	fact 3
$=\mathrm{len}$	@ y ${ }^{\text {a }}$))	fact 4
$=1+$	@ ylst)	definition of len
$=1$	+ len ylst	inductive hypothesis
$=\operatorname{len}$	+ len ylst	definition of len
1. []@v1 $=\mathrm{v} 1$		
2. $\mathbf{u 1 @ [] ~}=\mathrm{ut}$		
3. (ul@v7)@wl $=$ ul@(v1@wl)	$\text { fun len }[] \quad=0$	
4. [u]@us $=u$: us	\| len (x::xs) = $1+$ len x s	

Blast from the past
```fun cart [] _ = [] \| cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);```   What does the anonymous function do?



Blast from the past
fun cart [] _ = []   । cart (u::us) vl = (map (fn x => ( $u, x)$ ) vl) @ (cart us vl);   For each element in vl , creates a tuple (pair) with $u$ as the first element and an element of vl as the second

Blast from the past
fun cart [] $\quad=[]$
I cart (u::us) $\overline{\mathrm{v}} \mathrm{l}=(\operatorname{map}(\mathrm{fn} \mathrm{x}=>(\mathrm{u}, \mathrm{x})) \mathrm{vl})$ @ (cart us vl);
4. [2 points] Write a function cartesian that takes two lists and forms a list of all the ordered pairs, with one element from the first list and one from the second. For example, cartesian $[1,3,5][2,4]$ will return $[(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)]$.
cartesian : 'a list -> 'b list -> ('a * 'b) list


A property of cart
$\text { len(cart ul } \mathrm{vl})=(\text { len } \mathrm{ul}) *(\text { len } \mathrm{vl})$   What does this say?   Does it make sense?

## A property of cart

fun cart [] $\quad-\quad[]$
cart (u::us) $v l=(\operatorname{map}(f n x=>(u, x)) v l) @(c a r t u s v l) ;$

Prove: len(cart ulvl) $=(\operatorname{len~ul}) *(l e n ~ v l)$

Proof by induction. Which variable, ul or vi?

Base case: ulst $=[]$	
Want to prove:	len $($ cart [] vl $)=(\operatorname{len~[]~}) *(\operatorname{len~vl})$
	Proof?
Prove: len(cart ulvl) = (len ul) * (len vl)	
1. []$@ v 7=v 1$	fun len []$=0$
2. $u 1 @[]=u 1$	\| len (x: xs ) $=1+$ len xs
3. (ul@vi)@wl = ul@cri@	
4. [u]@us = u: $u \mathrm{us}$	


Base case: ulst = []	
Want to prove: len (cart [] vi)	$=(\operatorname{len}[]) *(\operatorname{len~v~})^{\prime}$
$\operatorname{len}($ cart [] vl$)=\operatorname{len}[]$	definition of cart
$=0$	definition of len
$=0$ * (len v $)$	math
$=(\operatorname{len}[]) *(\operatorname{len~v~} 1$ )	definition of len
Prove: len(cart ulvi) $=\binom{$ len }{ul}$*\binom{$ en }{v}	
1. []@v] $=\mathrm{v} 1$	len []$\quad=0$
	len (x: xs ) $=1+$ len xs
3. (ul@v7)@w1 = ul@(vi@wl)	
4. [u]@us = u: :us fun cart [ ${ }_{\text {cart }}$ (u: us)	





Quick refresher: datatypes
datatype direction $=$ North | South | East | West;
datatype student = Firstyear of string I
Sophomore of string |
Junior of string |
Senior of string;
datatype cs52int = Pos of int list
Zero I
Neg of int list;


Recursive datatype
datatype 'a binTree =
Empty
I Node of 'a binTree * 'a * 'a binTree;

What is this?


Recursive datatype
datatype 'a binTree $=$   Empty   I Node of 'a binTree * 'a * 'a binTree;   Node(Empty, 1, Empty); What does this look like?




Recursive datatype
```datatype 'a binTree = Empty \| Node of 'a binTree * 'a * 'a binTree;```
Node(Node(Empty, "apple", Node(Empty, "banana", Empty)), "carrot", Node(Empty, "rhubarb", Empty)); What does this look like?

Facts about binary trees
datatype 'a binTree =
Empty
I Node of 'a binTree * 'a * 'a binTree;
Counting elements in a tree $N($):
$N($ Empty $)=$

How many Nodes (i.e. values) are in an empty binary tree?

Facts about binary trees
datatype 'a binTree $=$ Impty I Node of 'a binTree * ' a * 'a binTree;
Counting elements in a tree $N():$ N(Empty) $\quad=0$
N(Node(u, elt, $v)$) $=$ How many Nodes (i.e. values) are in a non-empty binary tree (stated recursively)?

Facts about binary trees
datatype 'a binTree =
Empty
I Node of 'a binTree * 'a * 'a binTree;
Counting leaves in a tree $L()$:
L(Empty) $=0$
$\mathrm{L}(($ Empty, elt, Empty $)=1$
$\mathrm{L}($ Node $(u$, elt, $v)=\mathrm{L}(u)+\mathrm{L}(v)$

Facts about binary trees
datatype 'a binTree =
Empty I Node of 'a binTree * 'a * 'a binTree;

Counting leaves in a tree $\mathrm{L}($):
L(Empty) =
$\mathrm{L}(($ Empty, elt, Empty $)=$
$\mathrm{L}($ Node $(u$, elt, $v)=$

Facts about binary trees datatype 'a binTree = Empty I Node of 'a binTree * 'a * 'a binTree;
Counting Emptys in a tree $\mathrm{E}($):
$\mathrm{E}($ Empty $) \quad=?$
$E(\operatorname{Node}(u$, elt, $v)=$

	Tree induction
1. State what you're trying to prove! 2. State and prove the base case(s) (often Empty and/or Leaf) 3. Assume it's true for smaller subtrees - inductive hypothesis 4. Show that it holds for the full tree	

Notation summarized
$\square \mathrm{N}($): number of elements/values in the tree
$\square \mathrm{L}($): number of leaves in the tree
$\square \mathrm{E}(\mathrm{)}$: number of Empty nodes in the tree

$N(t)=E(t)-1$	
What is this saying in English?	
$\begin{array}{ll} N(\text { Empty }) & =0 \\ N(\text { Node(u, elt, v })) & =1+N(u)+N(v) \end{array}$	N : number of nodes L: number of leaves E: number of Emptys
$\begin{array}{ll} E(\text { Empty }) & =1 \\ E(\text { Node }(u, ~ e l t, ~ v) & =E(u)+E(v) \end{array}$	$\begin{array}{ll} \mathrm{L}(\text { (Empty }) & =0 \\ \mathrm{~L}((\text { Empty, elt, Empty }) & =1 \\ \mathrm{~L}(\text { Node }(u, \text { elt, } \mathrm{v}) & =\mathrm{L}(u)+\mathrm{L}(\mathrm{v}) \end{array}$

Base case: $\quad t=$ Empty	
Want to prove: $\quad \mathrm{N}($ Empty $)=\mathrm{E}$	$N($ Empty $)=\mathrm{E}($ Empty $)-1$
$\mathrm{N}($ Empty) $=0 \quad$ " N " fact	
$\begin{array}{rlrl} E(\text { Empty })-1 & =\downarrow-1 & \text { "E" fact } \\ & =0 & & \text { math } \end{array}$	
Prove: $\mathrm{N}(\mathrm{t})=\mathrm{E}(\mathrm{t})-1$	
$\begin{array}{ll} \mathrm{N}(\text { Empty }) & =0 \\ \mathrm{~N}(\text { Node }(\mathrm{u}, \text { elt, } \mathrm{v})) & =1+\mathrm{N}(\mathrm{u})+\mathrm{N}(\mathrm{v}) \end{array}$	N : number of nodes L: number of leaves E: number of Emptys
$\begin{array}{ll} E(\text { Empty }) & =1 \\ E(\text { Node }(u, ~ e l t, ~ v) & =E(u)+E(v) \end{array}$	$\begin{array}{ll} \mathrm{L}(\text { Empty }) & =0 \\ \mathrm{~L}((\text { Empty, elt, Empty }) & =1 \\ \mathrm{~L}(\text { Node }(u, \text { elt, } \mathrm{v}) & =\mathrm{L}(u)+\mathrm{L}(\mathrm{v}) \end{array}$

Inductive hypotheses:$\begin{aligned} & N(u)=E(u)-1 \\ & N(v)=E(v)-1 \end{aligned}$	
Want to prove: $N(\operatorname{Node}(u$, elt, $v))=E(\operatorname{Node}(u$, elt, v) $)$ - 1	
Prove: $\mathrm{N}(\mathrm{t})=\mathrm{E}(\mathrm{t})-1$	
$\begin{array}{ll} N(\text { Empty }) & =0 \\ N(\text { Node }(u, ~ e l t, ~ v)) & =1+N(u)+N(v) \end{array}$	N : number of nodes L: number of leaves E: number of Emptys
$\begin{array}{ll} E(\text { Empty }) & =1 \\ E(\text { Node }(u, ~ e l t, ~ v) & =E(u)+E(v) \end{array}$	$\begin{array}{ll} \hline \mathrm{L}(\text { Empty }) & =0 \\ \mathrm{~L}(\text { (Empty, elt, Empty) } & =1 \\ \mathrm{~L}(\text { Node(u, elt, v) } & =\mathrm{L}(u)+\mathrm{L}(v) \end{array}$

Want to prove: $\quad N(\operatorname{Node}(\mathrm{u}, \mathrm{elt}, \mathrm{v}))=\mathrm{E}(\operatorname{Node}(\mathrm{u}, \mathrm{elt}, \mathrm{v}))$ - 1	
$N($ Node(u, elt, v) $)=$	$=E(\operatorname{Node}(\mathrm{u}, \mathrm{elt}, \mathrm{v}) \mathrm{)}-1$
$N(\mathrm{u})=\mathrm{E}(\mathrm{u})-1$	
$\begin{array}{ll} \begin{array}{l} N(\text { Empty }) \end{array}=0 \\ N(\text { Node(u, elt, } v)) & =1+N(u)+N(v) \end{array}$	L : number of leaves E: number of Emptys
$\begin{array}{ll} E(\text { Empty }) & =1 \\ E(\text { Node }(u, \text { elt, } v) & =E(u)+E(v) \end{array}$	L(Empty) $\quad=0$ $L(($ Empty, elt, Empty $)=1$ $\mathrm{L}($ Node $(u$, elt, $v) \quad=\mathrm{L}(\mathrm{u})+\mathrm{L}(\mathrm{v})$

Want to prove: $\quad N(\operatorname{Node}(u$, elt, $v))=E(\operatorname{Node}(u, e l t, v))-1$	
$\begin{aligned} N(\operatorname{Node}(u, \text { elt, } v)) & =1+N(u)+N(v) & & \text { "N" fact } \\ & =1+E(u)-1+E(v)-1 & & \text { inductive hypothesis } \\ & =E(u)+E(v)-1 & & \text { math } \\ & =E(\operatorname{Node}(u, e l t, v))-1 & & \text { "E" fact } \end{aligned}$	
$\begin{aligned} & N(u)=E(u)-1 \\ & N(v)=E(v)-1 \end{aligned}$	N : number of nodes L: number of leaves E: number of Emptys
$\begin{array}{ll} N(\text { Empty }) & =0 \\ N(\text { Node }(\mathrm{u}, \mathrm{elt}, \mathrm{v})) & =1+\mathrm{N}(\mathrm{u})+ \end{array}$	
$\begin{array}{ll} E(\text { Empty }) & =1 \\ E(\text { Node }(u, \text { elt, } v) & =E(u)+E(v) \end{array}$	$\begin{array}{ll} \mathrm{L}(\text { Empty }) & =0 \\ \mathrm{~L}((\text { Empty, elt, Empty }) & =1 \\ \mathrm{~L}(\text { Node }(u, \text { elt, v) } & =\mathrm{L}(u)+\mathrm{L}(\mathrm{v}) \\ \hline \end{array}$

Be careful!				
CopyrightRedistribution in whole or in part prohibited				

Outline for a "good" proof by induction

1. Prove: what_to_prove
2. Base case: the_base_case(s)
a. state what you're trying to prove
b. show a step by step proof with each step clearly justified
3. Assume: the_inductive_hypothesis
4. Show: what_you're_trying_to_prove step by step proof from left hand side deriving the right hand side with each step clearly justified
