

		•
<u>^ </u>	m	In
- A U	m	

Assignment 5

Assignment 6

List induction

- 1. State what you're trying to prove!
- 2. State and prove the base case (often empty list)
- 3. Assume it's true for sublists inductive hypothesis
- 4. Show that it holds for the full list

List fact

len (map f lst) = len lst

What does this say? Does it make sense?

Base case: lst = [] Want to prove: len (map f [])	= len []	
len (map f []) = len ([]) d = len [] d	efinition of map efinition of ()	
Prove: len (map f lst) = len lst		
fun len] = 0 len (x::xs) = 1 + len xs fun map f] =] map f (x::xs) = (f x) :: (map f	xs);	

Inductive hypothesis: len (map f xs) = len xs Want to prove: len (map f (x::xs)) = len (x::xs)

Proof?

Prove: len (map f lst) = len lst

fun len [] = 0
 | len (x::xs) = 1 + len xs
fun map f [] = []
 | map f (x::xs) = (f x) :: (map f xs);

Another list fact

len (xlst @ ylst) = len xlst + len ylst

What does this say? Does it make sense?

Base case: xlst	= 0
Want to prove:	len ([] @ ylst) = len [] + len ylst

fun len [] = 0 | len (x::xs) = 1 + len xs

Proof?

Prove: len (xlst @ ylst) = len xlst + len ylst

- 1. []@v] = v]
- 2. u]@[] = u]
- 3. (ul@vl)@wl = ul@(vl@wl)
- 4. [u]@us = u::us

Want to prove:len ([] @ ylst) = len [] + len ylstlen ([] @ ylst) = ... = len [] + len ylist1. start with left hand side2. show a set of justified steps that derive the right hand sizeProve: len (xlst @ ylst) = len xlst + len ylst1. []@v1 = v12. ul@[] = u13. (ul@v1)@w1 = ul@(v1@w1)fun len [] = 0J len (x::xs) = 1 + len xs

Base case: xlst = []

Blast from the past

fun cart [] _ = [] | cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);

> What is the type signature? What does this function do?

Blast from the past

fun cart [] _ = [] | cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);

4. [2 points] Write a function cartesian that takes two lists and forms a list of all the ordered pairs, with one element from the first list and one from the second. For example, cartesian [1,3,5] [2,4] will return [(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)].

cartesian : 'a list -> 'b list -> ('a * 'b) list

A property of cart

fun cart [] _ = [] | cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);

len(cart ul vl) = (len ul) * (len vl)

What does this say? Does it make sense?

A property of cart

fun cart [] _ = [] | cart (u::us) vl = (map (fn x => (u,x)) vl) @ (cart us vl);

Prove: len(cart ul vl) = (len ul) * (len vl)

Proof by induction. Which variable, ul or vl?

Recursive datatype

```
datatype 'a binTree =
    Empty
    | Node of 'a binTree * 'a * 'a binTree;
```

Node(Node(Empty, 3, Node(Empty, 4, Empty)), 5, Node(Empty, 9, Empty));

What does this look like?

Facts about binary trees

datatype 'a binTree = Empty | Node of 'a binTree * 'a * 'a binTree;

Counting elements in a tree N(): N(Empty) = 0

Facts about binary trees

datatype 'a binTree = Empty | Node of 'a binTree * 'a * 'a binTree;

Counting elements in a tree N(): N(Empty) = 0

N(Node(u, elt, v)) =

How many Nodes (i.e. values) are in a non-empty binary tree (stated recursively)?

datatype 'a binTree = Empty I Node of 'a binTree * 'a * 'a binTree; Counting elements in a tree N(): N(Empty) = 0 N(Node(u, elt, v)) = 1 + N(u) + N(v) One element stored in this node plus the nodes in the left tree and the

nodes in the right tree

	Facts about binary trees
	datatype 'a binTree = Empty Node of 'a binTree * 'a * 'a binTree;
C	ounting <mark>leaves</mark> in a tree L(): L(Empty) =
	L((Empty, elt, Empty) = ?
	L(Node(u, elt, v) =

Facts about binary trees

= 0

datatype 'a binTree = Empty | Node of 'a binTree * 'a * 'a binTree;

Counting leaves in a tree L() :

L(Empty)

L((Empty, elt, Empty) = 1

L(Node(u, elt, v) = L(u) + L(v)

Facts about binary trees

datatype 'a binTree = Empty | Node of 'a binTree * 'a * 'a binTree;

Counting *Emptys* in a tree E():

E(Empty) = 1

E(Node(u, elt, v) = E(u) + E(v)

Notation summarized

- □ N(): number of elements/values in the tree
- □ L(): number of leaves in the tree
- □ E(): number of Empty nodes in the tree

Tree induction

- 1. State what you're trying to prove!
- State and prove the base case(s) (often Empty and/or Leaf)
- 3. Assume it's true for smaller subtrees inductive hypothesis
- 4. Show that it holds for the full tree

N(t) = E(t) - 1

What is this saying in English?

$\label{eq:nonlinear} \fboxlength{\abovedisplayskip}{2mm} N(Empty) &= 0 \\ N(Node(u, elt, v)) &= 1 + N(u) + N(v) \end{cases}$	N: number of nodes L: number of leaves E: number of Emptys
	$ \begin{array}{ll} L(Empty) &= 0 \\ L((Empty, elt, Empty) &= 1 \\ L(Node(u, elt, v) &= L(u) + L(v) \end{array} $

Base case: t = Empty Want to prove: N(Empty) =	= E(Empty) - 1
Proof?	
Prove: $N(t) = E(t) - 1$	
N(Empty) = 0 N(Node(u, elt, v)) = 1 + N(u) + N(v)	N: number of nodes L: number of leaves E: number of Emptys

Base case: t = Empty Want to prove: N(Empty) = E	(Empty) - 1
N(Empty) = 0 "N" fact	
E(Empty)-1 = 1 - 1	
Prove: $N(t) = E(t) - 1$	
	N: number of nodes L: number of leaves E: number of Emptys
E(Empty) = 1 E(Node(u, elt, v) = E(u) + E(v)	

Inductive hypotheses: $N(u) = I$ N(v) = I	(Relation holds for any subtree)
Want to prove: N(Node(u, el	t, v)) = E(Node(u, elt, v)) - 1
Prove: $N(t) = E(t) - 1$	
	N: number of nodes L: number of leaves E: number of Emptys
E(Empty) = 1 E(Node(u, elt, v) = E(u) + E(v)	L(Empty) = 0 L((Empty, elt, Empty) = 1 L(Node(u, elt, v) = L(u) + L(v)

Want to prove: N(Node(u, elt, v)) = E(Node(u, elt, v)) - 1
N(Node(u, elt, v)) = 1 + N(u) + N(v) = 1 + E(u) - 1 + E = E(u) + E(v) - 1 = E(Node(u, elt, v))	math	hypothesis
$\begin{split} N(u) &= E(u) - 1 \\ N(v) &= E(v) - 1 \end{split} \\ N(Empty) &= 0 \\ N(Node(u, elt, v)) &= 1 + N(u) + N(v) \\ E(Empty) &= 1 \\ E(Node(u, elt, v) = E(u) + E(v) \end{split}$	N: number of nodes L: number of leaves E: number of Emptys L(Empty) L((Empty, elt, Empty L(Node(u, elt, v)	•

Other interesting tree facts		
N(t) = E(t) - 1	N: number of nodes	
N(Empty) = 0 N(Node(u, elt, v)) = 1 + N(u) + N(v)	L: number of leaves E: number of Emptys	
	L(Empty) L((Empty, elt, Empty L(Node(u, elt, v)	· /

Outline for a "good" proof by induction

- 1. Prove: what_to_prove
- Base case: the_base_case(s)

 a. state what you're trying to prove
 b. show a step by step proof
 with each step clearly justified
- 3. Assume: the_inductive_hypothesis
 4. Show: what_you're_trying_to_prove step by step proof from left hand side deriving the right hand side with each step clearly justified