
3/10/16	

1	

LIST INDUCTION
David Kauchak
CS52 – Spring 2016

Admin

Assignment 5

Assignment 6

Today

http://lavonhardison.com/tag/repetition/

List induction

1.  State what you’re trying to prove!
2.  State and prove the base case (often empty list)
3.  Assume it’s true for sublists – inductive hypothesis
4.  Show that it holds for the full list

3/10/16	

2	

List fact

len (map f lst) = len lst

What does this say?
Does it make sense?

List induction

Prove: len (map f lst) = len lst
1.  State what you’re trying to prove!
2.  State and prove the base case (often empty list)
3.  Assume it’s true for sublists – inductive hypothesis
4.  Show that it holds for the full list

Facts

Base case:
Want to prove: len (map f []) = len []

lst = []

Proof?

Prove: len (map f lst) = len lst

Facts

Base case:
Want to prove: len (map f []) = len []

lst = []

Prove: len (map f lst) = len lst

definition of map len (map f []) = len ([])

= len [] definition of ()

3/10/16	

3	

Prove: len (map f lst) = len lst

Inductive hypothesis:
Want to prove:

len (map f xs) = len xs

len (map f (x::xs)) = len (x::xs)

Proof?

Inductive hypothesis:
Want to prove:

len (map f xs) = len xs

len (map f (x::xs)) = len (x::xs)

= 1 + len (map f xs)

= 1 + len xs

definition of map

definition of len

inductive hypothesis

len (map f (x::xs)) = len ((f x) :: (map f xs))

= len (x::xs) definition of len

Done!

Some list “facts”

What do they say?

3/10/16	

4	

Another list fact

len (xlst @ ylst) = len xlst + len ylst

What does this say?
Does it make sense?

1.  State what you’re trying to prove!
2.  State and prove the base case (often empty list)
3.  Assume it’s true for smaller lists – inductive hypothesis
4.  Show that it holds for the current list

Prove: len (xlst @ ylst) = len xlst + len ylst

use induction on xlst

Prove: len (xlst @ ylst) = len xlst + len ylst

Base case:
Want to prove: len ([] @ ylst) = len [] + len ylst

xlst = []

Proof?

Prove: len (xlst @ ylst) = len xlst + len ylst

Base case:
Want to prove: len ([] @ ylst) = len [] + len ylst

xlst = []

len ([] @ ylst) = … = len [] + len ylist

1.  start with left hand side
2.  show a set of justified steps that derive the right hand size

3/10/16	

5	

Prove: len (xlst @ ylst) = len xlst + len ylst

Base case:
Want to prove: len ([] @ ylst) = len [] + len ylst

xlst = []

len ([] @ ylst) = len ylst fact 1

= len [] + len ylst

= 0 + len ylst math

definition of len

Prove: len (xlst @ ylst) = len xlst + len ylst

Inductive hypothesis:
Want to prove:

len (xs @ ylst) = len xs + len ylst

len ((x::xs) @ ylst) = len (x::xs) + len ylst

Prove: len (xlst @ ylst) = len xlst + len ylst

Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst

len ((x::xs) @ ylst) =

len (xs @ ylst) = len xs + len ylst

= len (x::xs) + len ylst

Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst

len ((x::xs) @ ylst) =

len (xs @ ylst) = len xs + len ylst

= len (x::xs) + len ylst

3/10/16	

6	

Want to prove: len ((x::xs) @ ylst) = len (x::xs) + len ylst

len ((x::xs) @ ylst) =

len (xs @ ylst) = len xs + len ylst

= len (x::xs) + len ylst ?

Inductive hypothesis:
Want to prove:

len (xs @ ylst) = len xs + len ylst

len ((x::xs) @ ylst) = len (x::xs) + len ylst

len ((x::xs) @ ylst) = len (([x]@xs) @ ylst) fact 4

= len ([x] @ (xs @ ylst)) fact 3

= len (x :: (xs @ ylst)) fact 4

= 1 + len (xs @ ylst) definition of len

= 1 + len xs + len ylst inductive hypothesis

= len (x::xs) + len ylst definition of len

Blast from the past

What does the anonymous
function do?

Blast from the past

Takes a value, x, and creates
a tuple with u as the first
element and x as the second

3/10/16	

7	

Blast from the past

What does the map part of this function do?

Blast from the past

For each element in vl, creates a tuple (pair)
with u as the first element and an element of
vl as the second

Blast from the past

What is the type signature?
What does this function do?

Blast from the past

3/10/16	

8	

Blast from the past

Name the actor and movie

Blast from the past

A property of cart

len(cart ul vl) = (len ul) * (len vl)

What does this say?
Does it make sense?

A property of cart

Prove: len(cart ul vl) = (len ul) * (len vl)

Proof by induction. Which variable, ul or vl?

3/10/16	

9	

Base case:
Want to prove: len (cart [] vl) = (len []) * (len vl)

ulst = []

Proof?

Prove: len(cart ul vl) = (len ul) * (len vl)

Base case:
Want to prove: len (cart [] vl) = (len []) * (len vl)

ulst = []

Prove: len(cart ul vl) = (len ul) * (len vl)

len (cart [] vl) = len [] definition of cart

= 0 definition of len

= (len []) * (len vl)

= 0 * (len vl)

definition of len

math

Inductive hypothesis:
Want to prove:

len (cart us vl) = (len us) * (len vl)

len (cart (u::us) vl) = (len (u::us)) * (len vl)

Prove: len(cart ul vl) = (len ul) * (len vl)

Prove: len(cart ul vl) = (len ul) * (len vl)

Want to prove: len (cart (u::us) vl) = (len (u::us)) * (len vl)

len (cart (u::us) vl) = = (len (u::us)) * (len vl) ?

IH: len (cart us vl) = (len us) * (len vl)

3/10/16	

10	

len (cart (u::us) vl) = len (map (fn x => (u,x)) vl) @ (cart us vl))

IH: len (cart us vl) = (len us) * (len vl)

len (cart (u::us) vl) = (len (u::us)) * (len vl) Want to prove:

= len (vl) + len(cart us vl)
“@” fact

= len (vl) + (len us) * (len vl) inductive hypothesis

= (1 + (len us)) * (len vl) math

definition of cart

= (len (u::us)) * (len vl) definition of len

= len (map (fn x => (u,x)) vl)) + len (cart us vl)

“map” fact

Quick refresher: datatypes

Recursive datatype

-  Defines a type variable for use in the datatype constructors
-  Still just defines a new type called “binTree”

Recursive datatype

What is this?

3/10/16	

11	

Recursive datatype

Binary Tree!

‘a

‘a binTree ‘a binTree

A binary tree is a recursive
data structure where each
node in the tree consists of a
value and then two other
binary trees.

Recursive datatype

What does this look like? Node(Empty, 1, Empty);

Recursive datatype

Node(Empty, 1, Empty);

1

Empty Empty

Recursive datatype

What does this look like?

Node(Node(Empty, 3, Node(Empty, 4, Empty)), 5, Node(Empty, 9, Empty));

3/10/16	

12	

Recursive datatype

5

3

Empty

Node(Node(Empty, 3, Node(Empty, 4, Empty)), 5, Node(Empty, 9, Empty));

4

Empty Empty

9

Empty Empty

Recursive datatype

What does this look like?

Node(Node(Empty, “apple”, Node(Empty, “banana”, Empty)),
 “carrot”,
 Node(Empty, “rhubarb”, Empty));

Recursive datatype

carrot

apple

Empty

Node(Node(Empty, “apple”, Node(Empty, “banana”, Empty)),
 “carrot”, Node(Empty, “rhubarb”, Empty));

banana

Empty Empty

rhubarb

Empty Empty

Facts about binary trees

Counting elements in a tree N():
N(Empty) =

How many Nodes (i.e. values) are in
an empty binary tree?

3/10/16	

13	

Facts about binary trees

Counting elements in a tree N():
N(Empty) = 0

Facts about binary trees

Counting elements in a tree N():
N(Empty) = 0

N(Node(u, elt, v)) =

How many Nodes (i.e. values) are in a
non-empty binary tree (stated
recursively)?

Facts about binary trees

Counting elements in a tree N():
N(Empty) = 0

N(Node(u, elt, v)) = 1 + N(u) + N(v)

One element stored in this node plus
the nodes in the left tree and the
nodes in the right tree

Leaves

5

3

Empty

Node(Node(Empty, 3, Node(Empty, 4, Empty)), 5, Node(Empty, 9, Empty));

4

Empty Empty

9

Empty Empty

A “leaf” is a Node at the bottom of the tree, i.e.
Node(Empty, elt, Empty)

Which are the leaves?

3/10/16	

14	

Leaves

5

3

Empty

Node(Node(Empty, 3, Node(Empty, 4, Empty)), 5, Node(Empty, 9, Empty));

4

Empty Empty

9

Empty Empty

A “leaf” is a Node at the bottom of the tree, i.e.
Node(Empty, elt, Empty)

Facts about binary trees

Counting leaves in a tree L():
L(Empty) =

L((Empty, elt, Empty) =

L(Node(u, elt, v) =

?

Facts about binary trees

Counting leaves in a tree L() :
L(Empty) = 0

L((Empty, elt, Empty) = 1

L(Node(u, elt, v) = L(u) + L(v)

Facts about binary trees

Counting Emptys in a tree E():
E(Empty) =

E(Node(u, elt, v) =

?

3/10/16	

15	

Facts about binary trees

Counting Emptys in a tree E():
E(Empty) = 1

E(Node(u, elt, v) = E(u) + E(v)

Notation summarized

!  N(): number of elements/values in the tree

!  L(): number of leaves in the tree

!  E(): number of Empty nodes in the tree

Tree induction

1.  State what you’re trying to prove!
2.  State and prove the base case(s)

(often Empty and/or Leaf)
3.  Assume it’s true for smaller subtrees – inductive hypothesis
4.  Show that it holds for the full tree

N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)

E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)

L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)

N(t) = E(t) - 1

What is this saying in English?

N: number of nodes
L: number of leaves
E: number of Emptys

3/10/16	

16	

N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)

E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)

L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)

N(t) = E(t) - 1

Number of nodes/values is equal to the number of Emptys minus one

N: number of nodes
L: number of leaves
E: number of Emptys

5

3

Empty 4

Empty Empty

9

Empty Empty

Sanity check: is it right here?

N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)

E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)

L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)

N(t) = E(t) - 1

N: number of nodes
L: number of leaves
E: number of Emptys

5

3

Empty 4

Empty Empty

9

Empty Empty

4 nodes = 5 Emptys - 1

Number of nodes/values is equal to the number of Emptys minus one

N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)

E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)

L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)

Prove: N(t) = E(t) - 1
N: number of nodes
L: number of leaves
E: number of Emptys

Base case:
Want to prove: N(Empty) = E(Empty) - 1

t = Empty

Proof?

N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)

E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)

L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)

Prove: N(t) = E(t) - 1
N: number of nodes
L: number of leaves
E: number of Emptys

Base case:
Want to prove: N(Empty) = E(Empty) - 1

t = Empty

N(Empty) = 0

E(Empty)-1 = 1 - 1
 = 0

“N” fact

“E” fact
math

3/10/16	

17	

N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)

E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)

L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)

Prove: N(t) = E(t) - 1
N: number of nodes
L: number of leaves
E: number of Emptys

Inductive hypotheses:

Want to prove:

N(u) = E(u) - 1
N(v) = E(v) - 1

N(Node(u, elt, v)) = E(Node(u, elt, v)) - 1

(Relation holds for any subtree)

N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)

E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)

L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)

N: number of nodes
L: number of leaves
E: number of Emptys

Want to prove:

N(u) = E(u) - 1
N(v) = E(v) - 1

N(Node(u, elt, v)) = E(Node(u, elt, v)) - 1

N(Node(u, elt, v)) = = E(Node(u, elt, v)) - 1 ?

N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)

E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)

L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)

N: number of nodes
L: number of leaves
E: number of Emptys

Want to prove:

N(u) = E(u) - 1
N(v) = E(v) - 1

N(Node(u, elt, v)) = E(Node(u, elt, v)) - 1

N(Node(u, elt, v)) = 1 + N(u) + N(v) “N” fact

= 1 + E(u) - 1 + E(v) - 1 inductive hypothesis

= E(u) + E(v) - 1 math

= E(Node(u, elt, v)) - 1 “E” fact

Other interesting tree facts

N(Empty) = 0
N(Node(u, elt, v)) = 1 + N(u) + N(v)

E(Empty) = 1
E(Node(u, elt, v) = E(u) + E(v)

L(Empty) = 0
L((Empty, elt, Empty) = 1
L(Node(u, elt, v) = L(u) + L(v)

N: number of nodes
L: number of leaves
E: number of Emptys

N(t) = E(t) - 1

3/10/16	

18	

Summary of induction proofs

Numbers: 2i
i=0

n

∑ = 2n+1 −1 i
i=1

n

∑ =
n(n+1)
2

Recurrence relations:

count0 (k) =
k(k +1)
2

count1(k) = 2
k+1 − k − 2

Code equivalence:
fibrec(n) = fibiter(n)

len (map f xlst) = len xlst
Induction on lists:

len (xlst @ ylst) = len xlst + len ylst

len(cart ul vl) = (len ul) * (len vl)

Induction on trees:
N(t) = E(t) - 1

Be careful!

Outline for a “good” proof by
induction
1. Prove: what_to_prove

2. Base case: the_base_case(s)
 a. state what you’re trying to prove
 b. show a step by step proof
 with each step clearly justified

3. Assume: the_inductive_hypothesis
4. Show: what_you’re_trying_to_prove
 step by step proof from left hand side deriving the right
 hand side with each step clearly justified

