

•
nın

Assignment 4 graded

Assignment 5

Academic honesty

member

What is it's type signature?

What does it do?

member

```
fun member _ [] = false
    I member e (x::xs) = e=x orelse (member e xs);
```

'a -> 'a list -> bool

Determines if the first argument is in the second argument

member

fun member _ [] = false I member e (x::xs) = e=x orelse (member e xs);

How fast is it?

For a list with k elements in it, how many calls are made to member?

Depends on the input!

member

fun member _ [] = false I member e (x::xs) = e=x orelse (member e xs);

How will the run-time grow as the list size increases?

Linearly:

- for each element we add to the list, we'll have to make one more recursive call
- doubling the size of the list would roughly double the run-time

Uniquify

```
fun uniquify0 [] = []
l uniquify0 (x::xs) =
    if member x xs
      then uniquify0 xs
      else x::(uniquify0 xs);
```

```
fun uniquify1 [] = []
I uniquify1 (x::xs) =
    if member x (uniquify1 xs)
        then uniquify1 xs
        else x::(uniquify1 xs);
```

Type signature?

What do they do?

Which is faster?

```
How much faster?
```

uniquify0

fun uniquify0 [] = [] I uniquify0 (x::xs) = if member x xs then uniquify0 xs else x::(uniquify0 xs);

How many calls to member are made for a list of size k, including calls made in uniquify0 as well as recursive calls made in member?

Depends on the values!

uniquify0

fun uniquify0 [] = []
I uniquify0 (x::xs) =
 if member x xs
 then uniquify0 xs
 else x::(uniquify0 xs);

Worst case, how many calls to member are made for a list of size k, including calls made in uniquify0 as well as recursive calls made in member?

uniquify0

fun uniquify0 [] = []
I uniquify0 (x::xs) =
 if member x xs
 then uniquify0 xs
 else x::(uniquify0 xs);

How many calls are made if the list is empty?

0

uniquify0

fun uniquify0 [] = []
I uniquify0 (x::xs) =
 if member x xs
 then uniquify0 xs
 else x::(uniquify0 xs);

Recursive case: Let $count_0(i)$ be the number of calls that uniquify0 makes to member for a list of size i.

Can you define the number of calls for a list of size k $(count_0(k))$? Hint: the definition will be recursive?

uniquify0
<pre>fun uniquify0 [] = []</pre>
Recursive case: Let count _o (i) be the number of calls that uniquify0 makes to member for a list of size i.
$count_0(k) = (k+1) + count_0(k-1)$ worst case number of calls for 1 call to member of size k on a list of size k-1

Г

Recurrence relation
$count_0(k) = \begin{cases} 0 & \text{if, } k = 0\\ k + count_0(k-1) & \text{otherwise} \end{cases}$
How many calls is this?

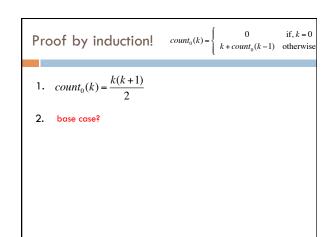
Recurrence relation
$count_0(k) = \begin{cases} 0 & \text{if, } k = 0\\ k + count_0(k-1) & \text{otherwise} \end{cases}$
$count_0(k) = k + count(k-1)$
$= k + k - 1 + count_0(k - 2)$
$= k + k - 1 + k - 2 + count_0(k - 3)$
$= k + k - 1 + k - 2 + \dots + 1 + count_0(0)$
$= k + k - 1 + k - 2 + \dots + 1 + 0$

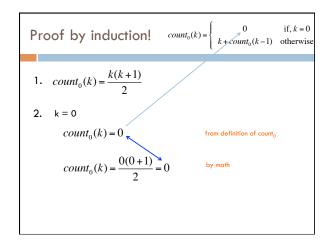
_

Recurrence relation
$count_0(k) = \begin{cases} 0 & \text{if, } k = 0\\ k + count_0(k-1) & \text{otherwise} \end{cases}$
$count_0(k) = \frac{k(k+1)}{2} \approx \frac{k^2}{2}$ calls to member Can you prove this?

Proof by induction

- State what you're trying to prove!
- 2. State and prove the base case
- What is the smallest possible case you need to consider?
- Should be fairly easy to prove
- Assume it's true for k (or k-1). Write out specifically what this assumption is (called the *inductive hypothesis*).
- 4. Prove that it then holds for k+1 (or k)
 - State what you're trying to prove (should be a variation on step 1)
 - b. Prove it. You will need to use inductive hypothesis.

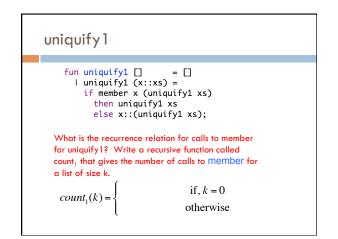


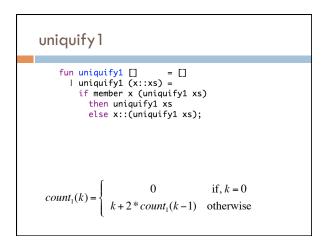


1. $count_0(k) = \frac{k(k+1)}{2}$	$count_0(k) = \begin{cases} 0 & \text{if, } k = 0\\ k + count_0(k-1) & \text{otherwise} \end{cases}$
3. assume: $count_0(k-1) =$	inductive hypothesis

1. $count_0(k) = \frac{k(k+1)}{2}$ $count_0(k) = \begin{cases} 0 & \text{if, } k = 0\\ k + count_0(k-1) & \text{otherwise} \end{cases}$	1. $count_0(k) = \frac{k(k+1)}{2}$ $count_0(k) = \begin{cases} 0 & \text{if, } k = k \\ k + count_0(k-1) & \text{otherwise} \end{cases}$
3. assume: $count_0(k-1) = \frac{(k-1)k}{2}$ inductive hypothesis	3. assume: $count_0(k-1) = \frac{(k-1)k}{2}$ inductive hypothesis
	4. prove: $count_0(k) = \frac{k(k+1)}{2}$
	$count_0(k) = k + count_0(k-1)$ by definition of $count_0$
	$= k + \frac{(k-1)k}{2}$ inductive hypothesis
	$=\frac{2k+k^2-k}{2}$ math (k = 2k/2, multiply (k-1)k)

Proof by induction! count _o (k	$= \begin{cases} 0 & \text{if, } k = 0\\ k + count_0(k-1) & \text{otherwise} \end{cases}$
3. assume: $count_0(k-1) = \frac{(k-1)k}{2}$	inductive hypothesis
4. prove: $count_0(k) = \frac{k(k+1)}{2}$	
$=\frac{2k+k^2-k}{2}$	
$=\frac{k^2+k}{2}$	more math (subtraction)
$=\frac{k(k+1)}{2}$ Done!	more math (factor out k)



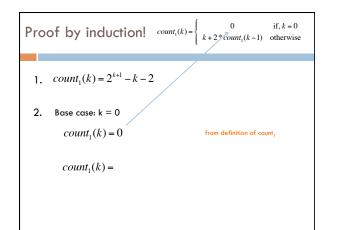


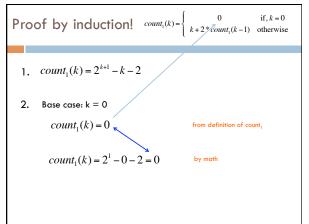
How many calls is that?	
$count_{i}(k) = \begin{cases} 0 & \text{if, } k = 0\\ k + 2 * count_{i}(k - 1) & \text{otherwise} \end{cases}$	
I claim: $count_1(k) = 2^{k+1} - k - 2$	
Can you prove it?	

Prove it! 1. State what you're trying to prove! 2. State and prove the base case 3. Assume it's true for k (or k-1) (and state the inductive hypothesis!) 4. Show that it holds for k+1 (or k) $count_1(k) = \begin{cases} 0 & \text{if, } k = 0 \\ k + 2*count_1(k-1) & \text{otherwise} \end{cases}$ 1. $count_1(k) = 2^{k+1} - k - 2$

Proof by induction! $count_1(k) = \begin{cases} 0 & \text{if, } k = 0 \\ k + 2^* count_1(k-1) & \text{otherwise} \end{cases}$

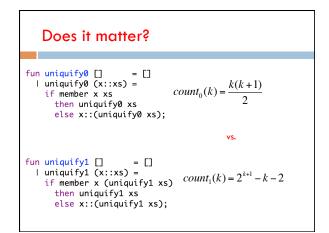
- 1. $count_1(k) = 2^{k+1} k 2$
- 2. Base case:

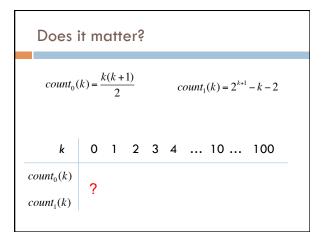




Proof by induction! cour	$f_{1}(k) = \begin{cases} 0 & \text{if, } k = 0\\ k + 2 * count_{1}(k - 1) & \text{otherwise} \end{cases}$
1. $count_1(k) = 2^{k+1} - k - 2$	
3. assume: $count_1(k-1) = 2$ inductive hypothesis $= 2$	$k^{k} - (k-1) - 2$ $k^{k} - k - 1$

Proof by induction! <i>count</i> (k)=	$\begin{cases} 0 & \text{if, } k = 0\\ k + 2 * count_1(k - 1) & \text{otherwise} \end{cases}$
3. assume: $count_1(k-1) = 2^k - k$	-1 inductive hypothesis
4. prove: $count_1(k) = 2^{k+1} - k - 2$	2
$count_1(k) = k + 2count_1(k-1)$	by definition of count ₁
$= k + 2(2^k - k - 1)$	inductive hypothesis
$= k + 2^{k+1} - 2k - 2$	math (multiply through by 2)
$=2^{k+1}-k-2$ Done!	math





Does i	t m	att	er?						
count _o ($count_1(k) = 2^{k+1} - k - 2$								
k	0	1	2	3	4		10.		100
$count_0(k)$ $count_1(k)$	0 0	?							

Does it matter?								
$count_0(k) = \frac{k(k+1)}{2}$ $count_1(k) = 2^{k+1} - k - 2$								
k	0	1	2	3	4	 10	100	
$count_0(k)$	0	1	2					
$count_0(k)$ $count_1(k)$	0	1						

Does it matter?									
$count_0(k) = \frac{k(k+1)}{2}$ $count_1(k) = 2^{k+1} - k - 2$									
k	0	1	2	3	4		10	•	100
$count_0(k)$ $count_1(k)$	0	1	3	?					
$count_1(k)$	0	1	4						

Does it matter?						
$count_0(k) = \frac{k(k+1)}{2}$ $count_1(k) = 2^{k+1} - k - 2$						
k	0	1	2	3 4 10 100		
$count_0(k)$	0	1	3	6 15 11 57		
$count_1(k)$	0	1	4	11 57		

Does it matter?									
$count_0(k) = \frac{k(k+1)}{2}$					са	ount ₁	(<i>k</i>) =	2 ^{<i>k</i>+1}	- <i>k</i> - 2
k	0	1	2	3	4	•••	10	••••	100
$count_0(k)$	0	1	3	6	15	••••	55		2
$count_1(k)$	0	1	4	11	57	•••	2036	•••	:

Does	Does it matter?					
count _o ($(k) = -\frac{k}{2}$	$\frac{k(k+1)}{2}$	1)	$count_1(k) = 2^{k+1} - k - 2$		
k	0	1	2	3 4 10 100		
$count_0(k)$	0	1	3	6 15 55 5050		
$count_1(k)$	0	1	4	11 57 2036 2.5 x 10 ³⁰		

Maybe it's not that bad

 2.5×10^{30} calls to member for a list of size 100

Roughly how long will that take?

Maybe it's not that bad

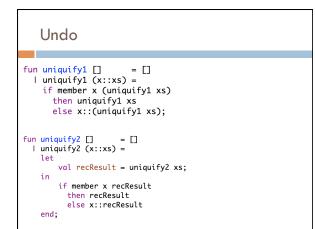
 2.5×10^{30} calls to member for a list of size 100

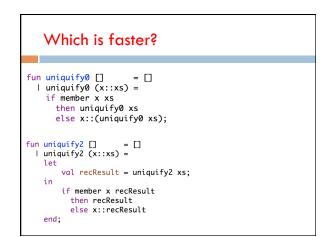
- Assume 10⁹ calls per second
- $\sim 3 \times 10^7$ seconds per year
- \sim 3 x 10¹⁷ calls per year
- $\sim 10^{13}$ years to finish! Just to be clear: 10,000,000,000,000 years

In practice

Undo

> What's the problem? Can we fix it?

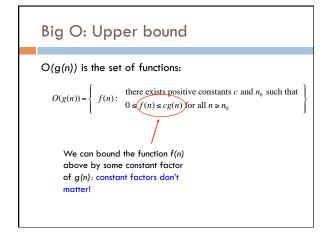


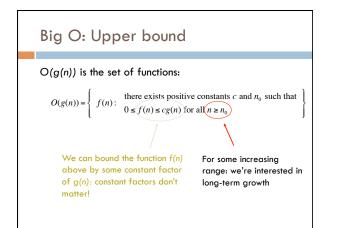


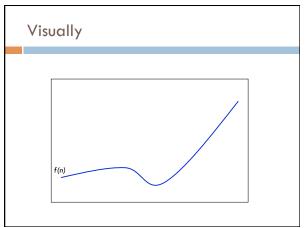
Big O: Upper bound

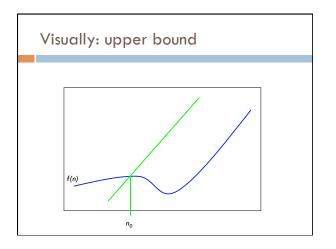
O(g(n)) is the set of functions:

 $O(g(n)) = \left\{ \begin{array}{ll} f(n): & \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \end{array} \right\}$










```
member is O(n) - \text{linear}
\square n+1 is O(n)
```

```
uniquify0 is O(n^2) - quadratic

n(n+1)/2 = n^2/2 + n/2 is O(n^2)
```

```
uniquify 1 is O(2^n) – exponential

2^{n+1}-n-2 is O(2^n)
```

uniquify2 is O(n²) – quadratic

Runtime examples						
	n	$n \log n$	n^2	n^3	2^n	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 18 min	10^{25} years
n = 100	< 1 sec	< 1 sec	1 sec	1s	10^{17} years	very long
n = 1000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long
n = 10,000	< 1 sec	< 1 sec	$2 \min$	12 days	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long
(adapted from [2], Table 2.1, pg. 34)						

Some examples
 O(1) - constant. Fixed amount of work, regardless of the input size add two 32 bit numbers determine if a number is even or odd sum the first 20 elements of an array delete an element from a doubly linked list
O(log n) – logarithmic. At each iteration, discards some portion of the input (i.e. half) Dinary search

Some examples

O(n) – linear. Do a constant amount of work on each element of the input

□ find an item in an array (unsorted) or linked list

determine the largest element in an array

 $O(n \log n) \log$ -linear. Divide and conquer algorithms with a linear amount of work to recombine

Sort a list of number with MergeSort

FFT

Some examples

O(n²) – quadratic. Double nested loops that iterate over the data

Insertion sort

 $O(2^n)$ – exponential

- Enumerate all possible subsets
- Traveling salesman using dynamic programming

O(n!)

- Enumerate all permutations
- determinant of a matrix with expansion by minors

STOPPED HERE

This is as far as I made it in lecture. There are two additional examples of proofs by induction that I won't cover, but I'll leave them in the notes in case you want to see more examples.

An aside

My favorite thing in python!

What do these functions do?

def fibrec(n):
 if n <= 1:
 return 1
 else:
 return fibrec(n-2) + fibrec(n-1)</pre>

```
def fibiter(n):
    prev2, prev1 = 0, 1
```

for i in range(n):
 prev2, prev1 = prev1, (prev1 + prev2)

return prev1

Runtime

```
def fibrec(n):
    if n <= 1:
        return 1</pre>
```

else: return fibrec(n-2) + fibrec(n-1)

```
def fibiter(n):
    prev2, prev1 = 0, 1
```

for i in range(n):
 prev2, prev1 = prev1, (prev1 + prev2)

return prev1

Which is faster?

What is the big-O runtime of each function in terms of n, i.e. how does the runtime grow w.r.t. n?

Runtime

def fibiter(n): prev2, prev1 = 0, 1

for i in range(n):
 prev2, prev1 = prev1, (prev1 + prev2)

return prev1

O(n) – linear

Informal justification:

The for loop does n iterations and does just a constant amount of work for each iteration. An increase in n will see a corresponding increase in the number of iterations.

Runtime

def fibrec(n):
 if n <= 1:
 return 1
 else:</pre>

se:
 return fibrec(n-2) + fibrec(n-1)

Guess?

Runtime

def fibrec(n):
 if n <= 1:
 return 1
 else:
 return fibrec(n-2) + fibrec(n-1)</pre>

Guess: O(2ⁿ) – for each call, makes two recursive calls What is the recurrence relation?

fun uniquify1 [] = []
l uniquify1 (x::xs) =
if member x (uniquify1 xs)
then uniquify1 xs
else x::(uniquify1 xs);

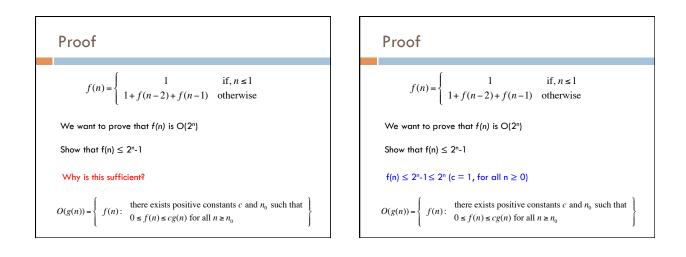
Runtime

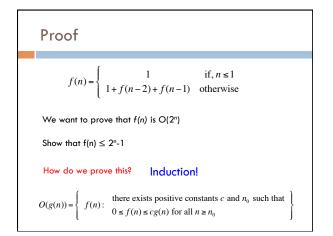
def fibrec(n):
 if n <= 1:
 return 1
 else:
 return fibrec(n-2) + fibrec(n-1)</pre>

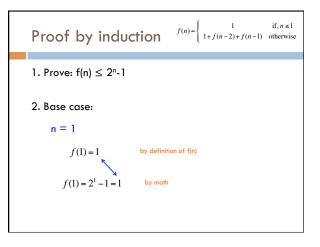
Guess: O(2ⁿ) – for each call, makes two recursive calls

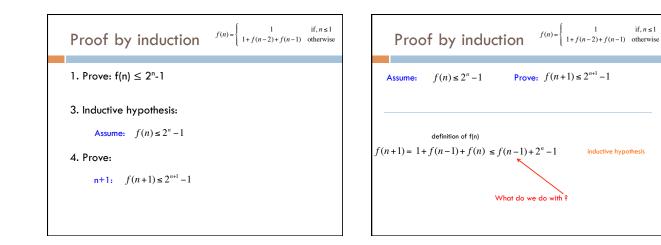
$$f(n) = \begin{cases} 1 & \text{if, } n \le 1\\ 1 + f(n-2) + f(n-1) & \text{otherwise} \end{cases}$$

Slightly different than the recurrence relation for uniquify1.



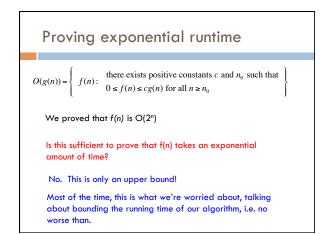


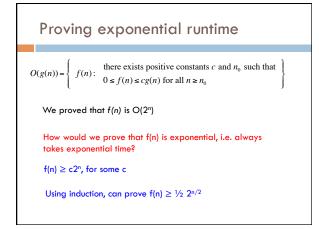




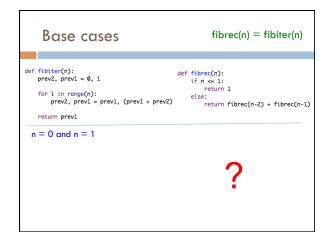
Proof by induction	$f(n) = \begin{cases} 1 & \text{if, } n \le 1\\ 1 + f(n-2) + f(n-1) & \text{otherwise} \end{cases}$
1. Prove: $f(n) \leq 2^n - 1$	
3. Inductive hypothesis: Assume: $f(n) \le 2^n - 1$ $f(n-1) \le 2^{n-1} - 1$	strong induction
4. Prove:	
$n+1: f(n+1) \le 2^{n+1}-1$	

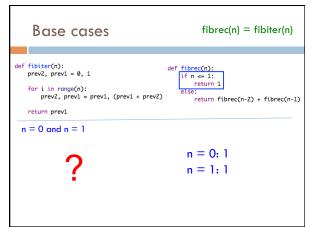
Proof by induction $f^{(n)} = \begin{cases} 1 \\ 1 \end{cases}$	1
Assume: $f(n) \le 2^n - 1$ Prove: $f(n+1)$ $f(n-1) \le 2^{n-1} - 1$	$) \le 2^{n+1} - 1$
definition of f(n) $f(n+1) = 1 + f(n-1) + f(n) \leq 2^{n-1} - 1 + 2^n - 1$	inductive hypotheses
$\leq 2^{n-1} + 2^n - 2$ $\leq 2^n + 2^n - 2$	math $2^{n-1} < 2^n$
$\leq 2 \cdot 2^{n} - 2$ $\leq 2^{n+1} - 2 \leq 2^{n+1} - 1$	more math



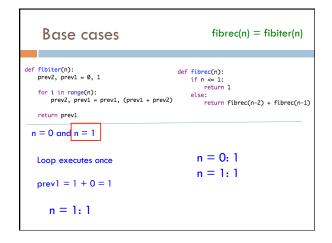


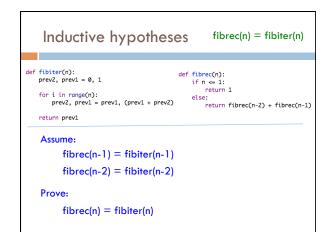
Proving correctness	Prove it! fibrec(n) = fibiter(n)
<pre>def fibrec(n): if n <= 1: return 1 else: return fibrec(n-2) + fibrec(n-1) def fibiter(n): prev2, prev1 = 0, 1 for i in range(n): prev2, prev1 = prev1, (prev1 + prev2) return prev1 Can you prove that these two functions give the same result, i.e. that fibrec(n) = fibiter(n)?</pre>	 State what you're trying to prove! State and prove the base case(s) Assume it's true for all values ≤ k Show that it holds for k+1 def fibrec(n): if n <= 1: return 1 else: return fibrec(n-2) + fibrec(n-1) def fibiter(n): prev2, prev1 = 0, 1 for i in range(n): prev2, prev1 = prev1, (prev1 + prev2) return prev1

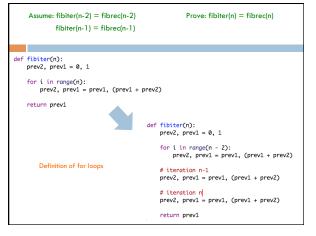




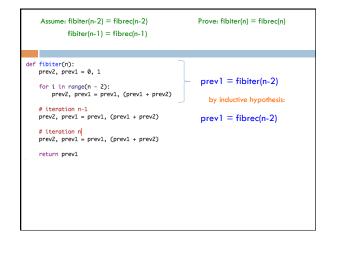
Base cases	fibrec(n) = fibiter(n)
<pre>def fibiter(n): prev2, prev1 = 0, 1 for i in range(n): prev2, prev1 = prev1, (prev1 + prev2) return prev1</pre>	<pre>def fibrec(n): if n <= 1: return 1 else: return fibrec(n-2) + fibrec(n-1)</pre>
n = 0 and $n = 1$	n = 0: 1
Loop doesn't execute at all prev1 = 1 and is returned	n = 0: 1 n = 1: 1
n = 0: 1	

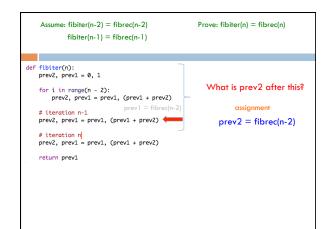


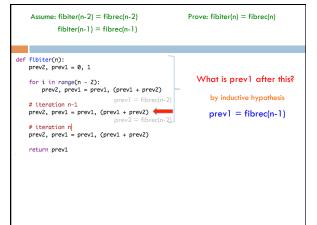




Assume: fibiter($n-2$) = fibrec($n-2$) fibiter($n-1$) = fibrec($n-1$)	Prove: fibiter(n) = fibrec(n)
<pre>def fibiter(n): prev2, prev1 = 0, 1 for i in range(n - 2): prev2, prev1 = prev1, (prev1 + prev2) # iteration n-1 prev2, prev1 = prev1, (prev1 + prev2) # iteration n prev2, prev1 = prev1, (prev1 + prev2) return prev1</pre>	What is prev1 after this?







Assume: fibiter(n-2) = fibrec(n-2) fibiter(n-1) = fibrec(n-1)	Prove: fibiter(n) = fibrec(n)
<pre>def fibiter(n): prev2, prev1 = 0, 1 for i in range(n - 2): prev2, prev1 = prev1, (prev1 + prev2) # iteration n-1 prev2, prev1 = prev1, (prev1 + prev2) # iteration n prev2 = fibrec(n-2) # iteration n prev2 = fibrec(n-1) prev2, prev1 = prev1, (prev1 + prev2) return prev1</pre>	What is prev1 after this?

