

A useful identity

What is the sum of the powers of 2 from from 0 to n?

$$\sum_{i=0}^{n} 2^{i} = 2^{0} + 2^{1} + \dots + 2^{n} = ?$$

The sum of the powers of 2 from from 0 to n is:

$$\sum_{i=0}^{n} 2^{i} = 2^{0} + 2^{1} + ... + 2^{n} = 2^{n+1} - 1$$
For example, what is:
$$\sum_{i=0}^{4} 2^{i} ? \sum_{i=0}^{9} 2^{i} ?$$

$$1 + 2 + 4 + 8 + 16 = 31 = 2^{5} - 1$$

$$1 + 2 + 4 + 8 + \dots + 2^9 = 2^{10} - 1 = 1023$$

A useful identity

The sum of the powers of 2 from from 0 to n is:

$$\sum_{i=0}^{n} 2^{i} = 2^{0} + 2^{1} + \dots + 2^{n} = 2^{n+1} - 1$$

How would you prove this?

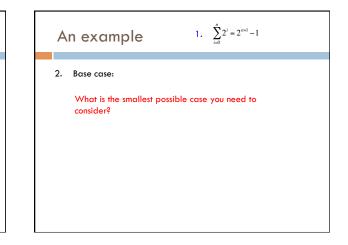
Proof by induction

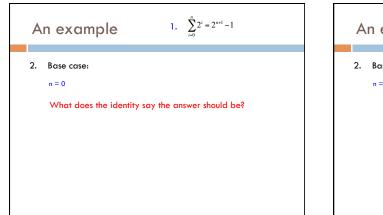
- 1. State what you're trying to prove!
- 2. State and prove the base case
- What is the smallest possible case you need to consider?Should be fairly easy to prove
- 3. Assume it's true for k (or k-1). Write out specifically what this assumption is (called the *inductive hypothesis*).
- 4. Prove that it then holds for k+1 (or k)
- $_{\rm o.}$ State what you're trying to prove (should be a variation on step 1)
- b. Prove it. You will need to use inductive hypothesis.

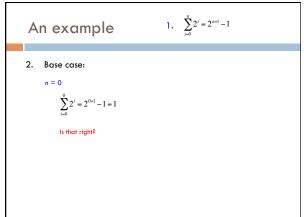
An example

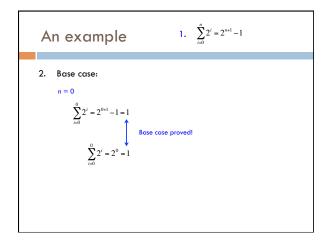
1. State what you're trying to prove!

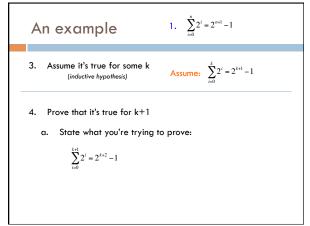
$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

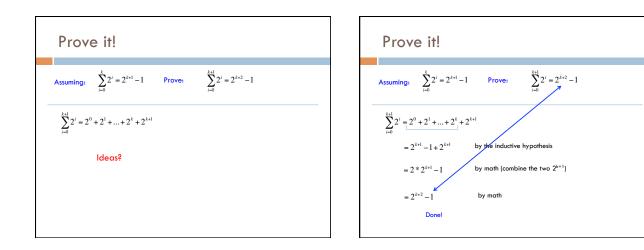












Proof like I'd like to see it on paper (part 1) 1. Prove: $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$

2. Base case: n = 0Prove: $\sum_{i=2}^{0} 2^{i} = 2^{0+1} - 1$

$$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$$

LHS: $\sum_{i=0}^{0} 2^i = 2^0 = 1$ by math RHS: $2^{0+1} - 1 = 2 - 1 = 1$ by math Proof like I'd like to see it on paper (part 2)

3. Assuming it's true for n = k, i.e.

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

4. Show that it holds for k+1, i.e.

$$\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$$

Proof like I'd like to see it on paper (part 3)		
$\sum_{i=0}^{k+1} 2^i = 2^0 + 2^1 + \dots + 2^k + 2^{k+1}$		
$= 2^{k+1} - 1 + 2^{k+1} \qquad by the inductive hypothesis$		
$= 2 * 2^{k+1} - 1$ by math (combine the two 2^{k+1})		
$= 2^{k+2} - 1$ by math		
Done!		

Proof by induction

- 1. State what you're trying to prove!
- 2. State and prove the base case
- 3. Assume it's true for k (or k-1)
- 4. Show that it holds for k+1 (or k)

Why does this prove anything?

Proof by induction	
We proved the base case is true, e.g.	$\sum_{i=0}^{0} 2^{i} = 2^{1} - 1$
If k = 0 is true (the base case) then k = 1 is true	$\sum_{i=0}^{1} 2^{i} = 2^{2} - 1$
If $k = 1$ is true then $k = 2$ is true	$\sum_{i=0}^{2} 2^{i} = 2^{3} - 1$
•••	
If n-1 is true then n is true	$\sum_{i=0}^{n} 2^{i} = 2^{n} - 1$

