
2/25/16	

1	

http://xkcd.com/1134/

DIGITAL CIRCUITS
David Kauchak
CS52 – Spring 2016

Admin

Assignment 4 due Monday at 11:59pm

Assignment 5 posted soon

! due Friday March 11, at 5pm (before spring break!)

Academic Honesty: Thanks!

Diving into your computer

2/25/16	

2	

Normal computer user After intro CS

After 5 weeks of cs52 What now?

2/25/16	

3	

One last note on CS41B

memory address instructions (assembly code) binary
representation
of code

How do we get this?

Encoding assembly instructions

1001 0100 0000 0000

1001 1000 0000 0000

opcode

1100 1100 0000 0000

dest src0 src1

What now?

1001 0100 0000 0000

1001 1000 0000 0000

1100 1100 0000 0000

Review: binary addition

01010
01111

?

Do the binary addition, making sure to keep track of the carries.
Assume unsigned numbers for now.

+

2/25/16	

4	

Review: binary addition

01010
01111
11001

0 1 1 1

Just to be sure, what are these numbers in decimal?

+

Review: binary addition

01010
01111
11001

0 1 1 1
10

15

25

We saw before, that we can view this problem recursively. How?

+

SML: Binary addition SML: Binary addition

handle a digit at a time

01010
01111
11001

0 1 1 1

+

2/25/16	

5	

SML: Binary addition

generate two pieces of information
-  output bit
-  carry bit

01010
01111
11001

0 1 1 1

+

A recursive component

in1 in2

out
carry-out

carry-in

01010
01111
11001

0 1 1 1

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in

01010
01111

0 1 1 1 0 1 1 1

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in

01010
01111

0 1 1 1 0 1 1 1

?

?

+

2/25/16	

6	

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in

01010
01111

0 1 1 1 0 1 1 1

?

?

1

1

0

0

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in

01010
01111

0 1 1 1 0 1 1 1

?

?

1

1

0

0

1

0

0

1

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in

01010
01111

0 1 1 1 0 1 1 1

?

?

1

1

0

0

1

0

0

1

1

0

0

1

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in in1 in2

out
carry-out

carry-in

01010
01111

0 1 1 1 0 1 1 1

1

1

0

0

1

0

0

1

1

0

0

1

1

1

1

1

1
+

2/25/16	

7	

Implementing the component

in1 in2

out
carry-out

carry-in

What goes on inside the component?

Implementing the component

in1 in2

out
carry-out

carry-in

Current implementation uses addition!

Implementing the component

in1 in2

out
carry-out

carry-in

in1 in2 carry-in out carry-
out

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

What are the outputs?

Implementing the component

in1 in2

out
carry-out

carry-in

in1 in2 carry-in out carry-
out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

2/25/16	

8	

Another implementation

-  Don’t use addition anymore
-  Translated the problem into a boolean logic problem

What are some boolean operators?

A B A and B A or B not A

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

What are some boolean operators?

A B A and B A or B not A A nand B A nor B A xor B

0 0 0 0 1 1 1 0

0 1 0 1 1 1 0 1

1 0 0 1 0 1 0 1

1 1 1 1 0 0 0 0

Gates

Gates have inputs and outputs
! values are 0 or 1

They are hardware components!

2/25/16	

9	

Gates as hardware Utilizing gates

1
0

0 ?

A B A and B A or B not A A nand B A nor B A xor B

0 0 0 0 1 1 1 0

0 1 0 1 1 1 0 1

1 0 0 1 0 1 0 1

1 1 1 1 0 0 0 0

Utilizing gates

1
0

0

0

0

A B A and B A or B not A A nand B A nor B A xor B

0 0 0 0 1 1 1 0

0 1 0 1 1 1 0 1

1 0 0 1 0 1 0 1

1 1 1 1 0 0 0 0

Utilizing gates

1
1

1 ?

A B A and B A or B not A A nand B A nor B A xor B

0 0 0 0 1 1 1 0

0 1 0 1 1 1 0 1

1 0 0 1 0 1 0 1

1 1 1 1 0 0 0 0

2/25/16	

10	

Utilizing gates

1
1

1

0

0

When is this circuit 1?

A B A and B A or B not A A nand B A nor B A xor B

0 0 0 0 1 1 1 0

0 1 0 1 1 1 0 1

1 0 0 1 0 1 0 1

1 1 1 1 0 0 0 0

Utilizing gates

1
1

1

in1 in2 in3 OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Designing more interesting circuits

in1 in2 in3 OUT

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

A B A and B A or B not A A nand B A nor B A xor B

0 0 0 0 1 1 1 0

0 1 0 1 1 1 0 1

1 0 0 1 0 1 0 1

1 1 1 1 0 0 0 0

Design a circuit for this

Designing more interesting circuits

in1 in2 in3 OUT

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

2/25/16	

11	

Back to addition…

in1 in2

out
carry-out

carry-in

in1 in2 carry-in carry-
out

sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A half-adder: no carry-in

A B carry sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A half-adder: no carry-in
A B A and B A or B not A A nand B A nor B A xor B

0 0 0 0 1 1 1 0

0 1 0 1 1 1 0 1

1 0 0 1 0 1 0 1

1 1 1 1 0 0 0 0

Design a circuit for this

Hint: solve each output bit
independently

A B carry sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A half-adder: no carry-in

low order bit of A+B

higher order bit of A+B

A B carry sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

2/25/16	

12	

Implementing a full adder

half-adder

half-adder

Implementing a full adder

low order bit
of A+B

high order
bit of A+B

low order bit
of A+B+C

high order bit of
A+B+C

Can we ever get a carry
from both half adders?

A B carry sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Implementing the component

in1 in2

out
carry-out

carry-in

What goes on inside the component?

Implementing the component

 A B

sum
carry-out

carry-in

2/25/16	

13	

Ripple carry adder

To implement an n-bit adder, we chain together n full-
adders, each adder handles one bit position

A0 B0

out
carry-out

A1 B1

out
carry-out

carry-in A2 B2

out
carry-out

carry-in A3 B3

out
carry-out

carry-in carry-in

A = A3 A2 A1 A0

B = B3 B2 B1 B0
Adder for adding 4-bit numbers

?

Ripple carry adder

To implement an n-bit adder, we chain together n full-
adders, each adder handles one bit position

A0 B0

out
carry-out

A1 B1

out
carry-out

carry-in A2 B2

out
carry-out

carry-in A3 B3

out
carry-out

carry-in carry-in

A = A3 A2 A1 A0

B = B3 B2 B1 B0
Adder for adding 4-bit numbers

0

Signed addition

0010
1110

?

Do the binary addition, making sure to keep track of the carries.
Assume signed numbers for now.

+

Signed addition

0010
1110
0000

1110

Is that right?
What numbers are these?

throw away last carry bit

+

2/25/16	

14	

Signed addition

0010
1110
0000

1110
2

-2

0

Ripple carry adder will work for signed and unsigned numbers

+

Subtraction

0010
1110 -

How can we solve this with addition?

Subtraction

0010
1110 -

0010
0010 flip bits

and add 1 0100

Do addition!

Ripple carry adder/subtractor

FA

FA

FA

FA

FA

FA

FA

FA

D = 0: addition
D = 1: subtraction

Why does this work?

A B A xor B

0 0 0

0 1 1

1 0 1

1 1 0

2/25/16	

15	

Ripple carry adder/subtractor

If D = 0
! Carry in for first adder = 0
! Bi XOR 0 = Bi

If D = 1

! Carry in for first adder = 1
(+1 to sum)

! Bi XOR 1 = NOT Bi
(flip all the bits of B)

FA

FA

FA

FA

C, N, Z and V bits

In addition to the sum, we often also calculate some
other useful information:

! C: carry out bit of the adder
! Z: 1 if the total result is zero, 0 otherwise
! N: sign bit of the result
! V: if there was “signed overflow”: the result cannot be

represented with the number of bits we’re using

What are the cases where signed overflow can occur?

V bit

V: if there was “signed overflow”: the result cannot be
represented with the number of bits we’re using

-  Adding two positive numbers (too big positive)
-  Subtracting a negative number from a positive number (too

big positive)
-  Adding two negative numbers (too big negative)
-  Subtracting a positive number from a negative number (too

big negative)

Detecting overflow

0011
0101 +

Add these (as signed numbers).
Does overflow occur?

2/25/16	

16	

Detecting overflow

0011
0101 +

Yes. How do we detect it?

1000

111

Detecting overflow

0011
0101 +

- Added two positive numbers and got a negative
- In general: if the sign bits are the same (of the numbers
we end up adding), but the higher order bit of the result
is different = overflow

1000

111

Detecting overflow

0011
1001 -

Subtract these (as signed numbers).
Does overflow occur?

Detecting overflow

0011
1001 -

1010

000

Yes. How do we detect it?

2/25/16	

17	

Detecting overflow

0011
1001 -

1010

000

- Subtracted a negative number from a positive, should
have been positive
- In general: if the sign bits are the same (of the numbers
we end up adding), but the higher order bit of the result
is different = overflow

0011
0111 +

1011

111

Python basics

