° THE BOAT ONCY HOLD5 TWO, BUT YOU
CAN'T LEPVE. THE GOAT WITH THE.
CABBRAGE OR THE WOLF WITH THE GOAT.

[ T e e o moee]

http://xked.com/1134/

DIGITAL CIRCUITS

2/25/16

Admin

Assignment 4 due Monday at 11:59pm

Assignment 5 posted soon
o due Friday March 11, at 5pm (before spring break!)

Academic Honesty: Thanks!

Diving into your computer




2/25/16

Normal computer user

Normal computer user

After intro CS

i kmport objectdrow.*;
public class Frog {
s U7

ieight of the frog tsage
© private static final double FROG_HEIGHT = 48;

the tnage of the frog. Note that 1t is not

77 This should refer
5 7/ initiolize by

77 the code we have provided
1 private Visiblelnage froginage;

pustic FrogO) {
)
public boolean overlaps(Visiblelnage vehiclelnage) {
return false; 7/ Y0U NEED TO CHANGE THIS!
1 public vold KO {
)
puslic vold reincarnateQ) {
i

5= public void hopTomard(Location point)

Y

puslic boolean {sAliveQ) {
return false; // Y00 NEED TO CHANGE THIS!
3

After 5 weeks of ¢s52

fmort objectdram.;
public class Frog
77 Heiant. of the frog inage
private seatic Final dousle FROGHEIGHT u 48;

/7 s should refer to
77 inixiatize by

roge of the frog. Note that it is ot

7 e cotrte hove provices 10
prive noge’ frogisage; Toa
public Frog0) ¢ add
)
Aapacvisio et ole

P tehser S ek 1o et st 0 ¢ Toop

add
pbtic void KO € sbe

bit
)
pustic voré reincarnateO) € endloop

sto
)

me
pustic voié nopTowardCLocation point) ( end

3

public bosteon isALiveO
return false; /7 Y0U NEED TO CHANGE THIS!

1

3

1

"3

0

0

E
r
r

0
o
0

233

r0 endloop
32

1
r1 Toop

30

get a value for a

get a value for b

result =

test ifa <=0

result 4= b

a

return for another iteration

write the value of product
halt

endloop

What now?

Toa r1 10 0 ; get a value for a
Toa r2 r0 0 get a valve for b
add r3 r0 r0 result =

ble rl r0 endloop ; test if a <= 0

add r3 13 r2 result 4= b;

a
bt r0 r1 Toop return for another iteration

sto r0 r3 0 ; write the value of product
; halt




2/25/16

1001 0100 0000 0000
1001 1000 0000 0000
1100 1100 0000 0000

One last note on CS41B Encoding assembly instructions
[ [
Instruction View [ c4nde | dezst [ srio I srzcl | unuﬁsed |
0000 : 1/0 =
0002 : 9400 loa rl rO 4 2 2
0004 : 9800 Toa r2 roO [opcode | dest | srco | argument |
0006 : ccO0 add r3 r0 roO
0008 : 7106 bge r0 rl 0010 Instruction View
000a : cf80 add r3 r3 r2 0000 : 1/0 1001 0100 0000 0000
000c : f501 sbc rlrl 1l 0002 : 9400 loa rl r0
000e : 61fa blt r0 rl 000a 0004 : 9800 1loa r2 rO
0010 : 8300 sto r0 r3 0006 : cc00 add r3 r0 ro0 1001 1000 0000 0000
0012 : 1000 hit 0008 : 7106 bge r0 rl 0010 1100 1100 0000 0000
L f L ) 000a : cf80 add r3 r3 r2
—' Y 000c : F501 sbc rl rl 1 socode dest 10 o]
pinary o 000e : 61fa blt r0 rl 000a peode des
memory address representation instructions (assembly code) 0010 : 8300 sto rO r3
of code 0012 : 1000 hlt
How do we get this?
What now? Review: binary addition
[ [

01010
+01111
2

Do the binary addition, making sure to keep track of the carries.
Assume unsigned numbers for now.




2/25/16

Review: binary addition

11710

01010
+01111

11001

Just to be sure, what are these numbers in decimal?

Review: binary addition

1110

01010 0
+01111

11001 %

We saw before, that we can view this problem recursively. How?

fun

SML: Binary addition

addAsListsBinary @ [] ] =0
addAsListsBinary c [] [} = [c]
addAsListsBinary c¢ x1 0 = addAsListsBinary c x1 [@]
addAsListsBinary c [] yl = addAsListsBinary c [0] yl
addAsListsBinary ¢ (x::xs) (y::ys) =
let
val total = ¢ + X + Yy
in
if total >= 2 then (* check if there's a carry *)
(total - 2)::addAsListsBinary 1 xs ys
else
total::addAsListsBinary @ xs ys
end;

fun

SML: Binary addition

addAsListsBinary @ [] 0 =[]
addAsListsBinary c [] ] = [c]
addAsListsBinary ¢ x1 0 = addAsListsBinary c x1 [@]
addAsListsBinary = addAsListsBinary c [0] yl

addAsListsBinary Cylsys)
Tet \\

val total = ¢ + X + Yy i

in
10
if total >= 2 then (* check if there's a ca
(total - 2)::addAsListsBinary 1 xs ys U O] O
else
total::addAsListsBinary @ xs ys +
o 01111

handle a digit at a time




2/25/16

SML: Binary addition

fun addAsListsBinary @ [] ] =0
| addAsListsBinary ¢ [] [} = [c]
| addAsListsBinary c x1 0 =
| addAsListsBinary c [] yl =
| addAsListsBinary c (x::xs) (y::ys) =
let

val total = c + x + y
in

if tota hen (* check if there'
':addAsListsBinar‘y

generate two pieces of information
- output bit
- carry bit

addAsListsBinary ¢ x1 [0]
addAsListsBinary c [0] yl

A recursive component

11710

01010
+01111

11001

inl in2 carry-in
carry-out

out

Adding with components

01010
+01111

/

e 4 )

11 01 11

inl in2 carry-in inl in2 carry-in inl in2 carry-in
carry-out carry-out carry-out
out out out

R

01

inl in2
carry-out
out

Adding with components

01010
+01111

11 01 11

inl in2 carry-in in1 in2 carry-in in1 in2 carry-in
carry-out carry-out carry-out
out out out

01

inl in2

" carry-out

out




2/25/16

Adding with components
|

0
01010

+01111
1

11 0 01

11 01
lli llql*l | |

? 1

Adding with components

10
o1010

+01111
01

e

01
|
R
?

11 110
| || ‘V‘th |
0

0 01
!
1

Adding with components
|

110
o1010

+01111
001

Adding with components

1110
01010

+01111
11001

0 01
!
1

11 1 011 11
R
1 0 0




2/25/16

N
l l l . out

(]
[¢]
[¢]
[¢]
1
1
1
1

- © - 0 - o - o

]
1
1
(]
[]
1
1

What are the outputs?

Implementing the component Implementing the component
== |
l let
. val total = c + x +y
" if total >= 2 then (* check if there's a carry *)
(total - 2)::addAslistsBinary 1 xs ys
l l l else
total::addAsListsBinary @ xs ys
end;
Current implementation uses addition!
What goes on inside the component?
Implementing the component Implementing the component
== |

carry-in out carry-
l l l out

o o o | o )
o o I 0
o 1 o | 0
o 1 ] oo 1
1o o | )
1o [ 1
1 1 [ I 0 1
1 1 1 I 1 1




2/25/16

Another implementation

fun addAsListsBinary @ [] 0 =0
| addAsListsBinary c [] 0 = [c]
| addAsListsBinary c x1 0 = addAsListsBinary c x1 [0]
| addAsListsBinary ¢ [] 1 = addAsListsBinary c [0] yl

y

| addAsListsBinary ¢ (x::xs) (y::ys) =

if x = 1 andalso y = 1 |andalso ¢ = 1 then

1::(addAsListsBinary 1 xs ys)

else if (x = 1 andalso y = 1) orelse
(x = 1/andalso c = 1) jorelse
(y = 1 [andalso ¢ = 1) then
0::(addAsListsBinary 1 xs ys)
else if x = 1 orelse y = 1 orelse ¢ = 1 then
1::(CaddAsListsBinary @ xs ys)
else
0::(addAsListsBinary @ xs ys);

- Don't use addition anymore
- Translated the problem into a boolean logic problem

What are some boolean operators?

- = o o
- o = o
- o o o
o o - -

What are some boolean operators?

= S e
- o = o
- o o o
- - B
o2l - =
o - B
o o o —
o - - o

Gates

not “>‘k xor :)D
e S
or D— nor D

Gates have inputs and outputs

values are O or 1

They are hardware components!




2/25/16

Utilizing gates

Utilizing gates

)
-

Gates as hardware

Utilizing gates

J— 0

not Do




2/25/16

tes

izing ga

Util

]T‘
s

©o -~ o o o o o

o~ o ~ o o ~

oo~~~ o - -

© o o o ~ - -
VR

ts

ing circui

terest

igning more in

Des

-~ 0~ 0o ~ o ~

© ~ -~ 0 0 ~ ~

© 0o~~~ ~

Utilizing gates

When is this circuit 12

ts

ing circui

terest

igning more in

.

Des

-~ 0O -~ 0o -~ o ~

© ~ ~ 0 o ~ ~

ois] ol - B -

Design a circuit for this

10



2/25/16

Back to addition...

A half-adder: no carry-in

o o 0 0 0 )
o o 1 0 1 in1 in2 carry-in |
0 1 0 0 1 m"y-w'out o 5 I 5 .
21 ! ! 0 0 1| oo 1
——— 2 g ! 1 o] o 1
R e R I
1 1 0 1 )
1 1 1 1 1
A half-adder: no carry-in A half-adder: no carry-in
|
o ol oo v || ] o
o 1 | 0 | 1 | 1 | 1 | o | 1
voofobrbe ot low order bit of A+B
L I I I 1 I 0 I 0 I 0 I 0 low order bit of A+

Hint: solve each output bit
independently

not ~{>¥ xor D
Design a circuit for this and D nand D
or D nor D

- - o o
- o - o

“--H
o - - o

A 74*?} sum

U

carry

- - o o
- o - o

A |
o - - o

higher order bit of A+B

11



2/25/16

in1 in2 carry-in
carry-out

out

What goes on inside the component?

Implementing a full adder Implementing a full adder
o o
! carry-in low order bit  CAITY-in
! ! [l naatatatat el of A+B low order bit
| [ ﬁ“\ﬁ\ | L of A+B+C
! A , sum A1 3 1 \ sum
AT | BF?}W%L>
i Q : [ ________________ ! U U
! | J half-adder high order | Can we ever get a carry
[ I bit of A+E L from both half adders?
half-adder \ I )
o oo o  high order bit of
0 1 I 0 1 A+B+C
carry-out 1o H o carry-out
Implementing the component Implementing the component
o o

A B carry-in
carry-out
sum
carry-in
Ay ; —7 sum
B
carry-out

12



2/25/16

Ripple carry adder

To implement an n-bit adder, we chain together n full-
adders, each adder handles one bit position

A=A A A A,
Adder for adding 4-bit numbers

B=8,B,B, B,
A; By comydn A, B, camy-in A, By camry-in Ay Bycmm
carry-out carry-out carry-out carry-out
out out out out

Ripple carry adder

To implement an n-bit adder, we chain together n full-
adders, each adder handles one bit position

A=A A A A,
Adder for adding 4-bit numbers

B=B8,B,B, B,
0
A; B, carryin A, B, caryin Ay By ey As By carry-in
carry-out carry-out carry-out carry-out
out out out out

Signed addition

0010
+1110

2

Do the binary addition, making sure to keep track of the carries.
Assume signed numbers for now.

Signed addition

throw away last carry bit 1110
0010

+1110

0000

Is that right?
What numbers are these?

13



2/25/16

Signed addition

1110
0010 2
+1110 -2

0000 0

Ripple carry adder will work for signed and unsigned numbers

Subtraction

0010
-1110

How can we solve this with addition?

Subtraction

0010 0010
-1110 0010

- flip bits

and add 1 O-I OO

Do addition!

Ripple carry adder/subtractor

| D
0 o o o . 1
o FA
A © |V I 1 Bo ti }J resulty
27 FA sumo I
0
o] oo

I A L FA L resuly
A FA | By L caryout
camyou
Ay nyin
canyin s result:
Ay O B, ti> FA }‘ 2

: D = 0: addition :
| D = 1: subtraction
Anl A sumy 2" T~ FA resulty,
Bn L
catry ‘f("
Why does this work? carry

14



2/25/16

Ripple carry adder/subtractor

IfD=0
Carry in for first adder = 0
B, XOR 0 = B;

IfD=1
Carry in for first adder =1
(+1 to sum)
B, XOR 1 = NOT B,
(flip all the bits of B)

Ao
By

A
Bi -

Ap—]

By

Ap—
By T

D

- FA

> resulty
FA result;

arry-out

[camyn |
Li~ | FA [ Tesultz

FA result,,

i
carry

C, N, Z and V bits

In addition to the sum, we often also calculate some
other useful information:

C: carry out bit of the adder

Z: 1 if the total result is zero, O otherwise

N: sign bit of the result

V: if there was “signed overflow”: the result cannot be
represented with the number of bits we're using

What are the cases where signed overflow can occur?

V bit

V: if there was “signed overflow”: the result cannot be
represented with the number of bits we're using

Adding two positive numbers (too big positive)
Subtracting a negative number from a positive number (too

big positive)

Adding two negative numbers (too big negative)
Subtracting a positive number from a negative number (too

big negative)

Detecting overflow

0011
0101

Add these (as signed numbers).
Does overflow occur?

15



2/25/16

Detecting overflow

111
0011

+0101
1000

Yes. How do we detect it?

Detecting overflow

111
0011

+0101

1000

- Added two positive numbers and got a negative

- In general: if the sign bits are the same (of the numbers
we end up adding), but the higher order bit of the result
is different = overflow

Detecting overflow

0011
- 1001

Subtract these (as signed numbers).

Does overflow occur?

Detecting overflow

000
0011

- 1001
1010

Yes. How do we detect it?

16



2/25/16

Detecting overflow

000 111
0011 0011
- 1001 +0111
1010 1011

- Subtracted a negative number from a positive, should
have been positive

- In general: if the sign bits are the same (of the numbers
we end up adding), but the higher order bit of the result
is different = overflow

Python basics

17



