

A quick review of search

Problem solving via search:

- To define the state space, define three things:
- is_goal
- next_states
- starting state

Uninformed search vs. informed search

- what's the difference?
- what are the techniques we've seen?
- pluses and minuses?

Admin

- Assignment 10 out
- May work in groups of up to 4 people
- Due Sunday 4/24 (though, don't wait until the weekend to finish!)
Why should we study games?
Clear success criteria
Important historically for AI
Fun ©

Good application of search
\quad - hard problems (chess 35^{100} states in search space, 10^{40} legal
states)
Some real-world problems fit this model
\quad - game theory (economics)
- multi-agent problems

Types of games
What are some of the games
you've played?

Types of games: game properties

single-player vs. 2-player vs. multiplayer

Fully observable (perfect information) vs. partially observable

Discrete vs. continuous
real-time vs. turn-based
deterministic vs. non-deterministic (chance)

Strategic thinking $\stackrel{?}{=}$ intelligence
For reasons previously stated, two-player games have been a focus of AI since its inception...
Begs the question: Is strategic
thinking the same as intelligence?

Strategic thinking $\stackrel{?}{=}$ intelligence

Humans and computers have different relative strengths in these games:
humans

computers
?

Strategic thinking $\stackrel{?}{=}$ intelligence

How could you figure out how humans approach playing chess?

How humans play games...
An experiment (by deGroot) was performed in which chess positions were shown to novice and expert players...
experts could reconstruct these perfectly - novice players did far worse...

Random chess positions (not legal ones) were then shown to the two groups
experts and novices did just as

- experts and novices did just as
badly at reconstructing them!

Tic Tac Toe as search

If we want to write a program to play tic tac toe, what question are we trying to answer?

Given a state (i.e. board configuration), what move should we make!

Tic Tac Toe as search

Tic Tac Toe as search

Eventually, we'll get to a leaf

Try and make moves that move us towards a win, i.e. where there are leaves with a WIN.

Optimal Strategy

An Optimal Strategy is one that is at least as good as any other, no matter what the opponent does

- If there's a way to force the win, it will
- Will only lose if there's no other option

Defining a scoring function
Opponent's (O) turnX X O O X O X
What should be the score of this state?
-1: we can get to a win

Minimax Algorithm: An Optimal Strategy

```
minimax(state) =
```

```
        - if state is a terminal state
            Utility(state)
        - if MY turn
            return the maximum of minimax(...)
            on all next states of state
        - if OPPONENTS turn
            return the minimum of minimax(...)
            on all next states of state
```

- Uses recursion to compute the "value" of each state
- Proceeds to the leaves, then the values are "backed up" through the tree as the recursion unwinds
- What type of search is this?
- What does this assume about how MIN will play? What if this isn't true?

Games State Space Sizes

On average, there are ~ 35 possible moves that a chess player can make from any board configuration..

Games State Space Sizes	
AlphaGo (created by Google), just in April beat one of the best Go players: http://www.nytimes.com/2016/04/05/ science/google-alphago-artificialintelligence.html	
Can search entire space	Branching Factor Estimates for different two-player games
$\text { Can't } \cdot(\quad \text { computer-dominated }$	Othello 30 Chess 35 Go 300

Games State Space Sizes

Pruning helps get a bit deeper

For many games, still can't search the entire tree

Now what?

For many games, still can't search the entire tree
Go as deep as you can:

- estimate the score/quality of the state (called an evaluation function)
- use that instead of the real score

computer-dominated	Checkers	10
	Othello	30
	Chess	35
	Go	300

Tic Tac Toe evaluation functions

$$
\begin{array}{l|l|l}
& & \\
\hline 0 & x & x \\
\hline & 0 &
\end{array}
$$

Ideas?

Example Tic Tac Toe EVAL

Tic Tac Toe
Assume MAX is using " X "
$E V A L($ state $)=$
if state is win for MAX:
if state is win for MIN:
else:
(number of rows, columns and diagonals available to MAX) - (number of rows, columns and diagonals
available to MIN)

$=6-4=2$

$$
\begin{array}{c|c|c}
& & \\
\hline \mathrm{O} & \mathrm{X} & \mathrm{x} \\
\hline & \mathrm{O} &
\end{array}
$$

$$
=4-3=1
$$

Chess evaluation functions

Ideas?

Chess EVAL

Any problems with this?

Chess EVAL

$$
E V A L(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+w_{3} f_{3}(s)+\ldots
$$

A feature can be any numerical information about the board

- as general as the number of pawns
- to specific board configurations

Deep Blue: 8000 features!

history/end-game tables
History - keep track of the quality of moves from previous games - use these instead of search
end-game tables \quad - do a reverse search of certain game configurations, for example - tells you what to do in any configuration meeting this criterion - if you ever see one of these during search, you lookup exactly what to do

end-game tables

Devastatingly good
Allows much deeper branching

- for example, if the end-game table encodes a 20 -move finish and we can search up to 14
- can search up to depth 34

Stiller (1996) explored all end-games with 5 pieces

- one case check-mate required 262 moves!

Knoval (2006) explored all end-games with 6 pieces

- one case check-mate required 517 moves!

Traditional rules of chess require a capture or pawn move within 50 or it's a stalemate

Opening moves

At the very beginning, we're the farthest possible from any goal state

People are good with opening moves

Tons of books, etc. on opening moves

Most chess programs use a database of opening moves rather than search

