

Admin
Assignment $8 \ldots$ how did it go?
Assignment 9
\square Due Sunday at $11: 59 \mathrm{pm}$

Schedule

Other search problems

Midterm next Tuesday (4/12)
\square In-class
\square Will focus on material since the second midterm up through today's class

- Can use 2 pages of notes (like last time)
- I'll post practice problems

Lab Monday will be a review session

What problems have you seen that could be posed as search problems?

What is the state?

Start state

Goal state

State-space/transition between states

| 8-puzzle | | |
| :--- | :--- | :--- | :--- |
| goal | | |
| | | |
| | | |
| | | |

Remove 5 Sticks

Water Jug Problem
Given a full 5 -gallon iug and a full 2 -gallon iug, fill the 2-gallon iug with
exactly one gallon of water.

Missionaries and Cannibals

Three missionaries and three cannibals wish to cross the river. They have a
small boat that will carry up to two people. Everyone can navigate the boat.
If at any time the Cannibals outnumber the Missionaries on either bank of the
river, they will eat the Missionaries. Find the smallest number of crossings
that will allow everyone to cross the river safely.

What is the "state" of this problem (it should
capture all possible valid configurations)?

Missionaries and Cannibals

Three missionaries and three cannibals wish to cross the river. They have a small boat that will carry up to two people. Everyone can navigate the boat. If at any time the Cannibals outnumber the Missionaries on either bank of the river, they will eat the Missionaries. Find the smallest number of crossings that will allow everyone to cross the river safely.

MMMCCC B

MMCC	B MC
MC	B MMCC

Missionaries and Cannibals

Three missionaries and three cannibals wish to cross the river. They have a small boat that will carry up to two people. Everyone can navigate the boat. If at any time the Cannibals outnumber the Missionaries on either bank of the river, they will eat the Missionaries. Find the smallest number of crossings that will allow everyone to cross the river safely.

8-puzzle revisited

How hard is this problem?

8-puzzle revisited				
The average depth of a solution for an 8-puzzle is 22 moves				
An exhaustive search requires searching $\sim 3^{22}=3.1 \times 10^{10}$ states - BFS: 10 terabytes of memory - DFS: 8 hours (assuming one million nodes/second)				
Can we do better? \quad1 3 8				
Is DFS and BFS intelligent?	4		7	
	6	5	2	

Informed search

Order to_visit based on some knowledge of the world that estimates how "good" a state is $\square h(n)$ is called an evaluation function

Best-first search

\square rank to_visit based on $h(n)$
\square take the most desirable state in to_visit first
\square different approaches depending on how we define $h(n)$

Heuristic
Merriam-Webster's Online Dictionary
Heuristic (pron. Inyu-'ris-tik 1): adj. [from Greek
heuriskein to discover.] involving or serving as an aid
to learning, discovery, or problem-solving by
experimental and especially trial-and-error methods
The Free On-line Dictionary of Computing (2/19/13)
heuristic 1. Of or relating to a usually speculative
formulation serving as a guide in the investigation or
solution of a problem: "The historian discovers the
past by the judicious use of such a heuristic device as
the 'ideal type'" (Karl J. Weintraub).

Two heuristics

2	8	Which state is better?		
1	6			
	7		1	23
1	2		8	4
8	6		7	65
	7			AL
6	2			
8				
7	1			

Heuristic function: $h(n)$

An estimate of how close the node is to a goal

Uses domain-specific knowledge!

Examples

- Map path finding?
- straight-line distance from the node to the goal ("as the crow flies")
- 8-puzzle?
- how many tiles are out of place
- sum of the "distances" of the out of place tiles
- Missionaries and cannibals?
- number of people on the starting bank

Two heuristics

How many tiles are out of place?

Two heuristics				
	Tiles out of place	Sum of distances for out of place tiles		
2 8 3 1 6 4 7 5	Which heuristic is better (if either)?			
			12	3
			8	4
			7	
\% 8.64	2	2	G0	
	2	6		
$7 / 135$				

Informed search algorithms

Best first search is called an "informed" search algorithm

Why wouldn't we always use an informed algorithm? \square Coming up with good heuristics can be hard for some problems
\square There is computational overhead (both in calculating the heuristic and in keeping track of the next "best" state)

Informed search algorithms

Any other problems/concerns about best first search?
Informed search algorithms

Any other problems/concerns about best first search? - Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic

What would the search do?

Informed search algorithms

Any other problems/concerns about best first search? \square Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic

Doesn't take into account how far it's come. Best first search is a "greedy" algorithm

Sudoku

Fill in the grid with the numbers 1-9 - each row has 1-9 (without repetition) - each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

Sudoku

How can we pose this as a search problem?
State
Start state
Goal state
State space/transitions

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that mee constraints

Fill in the grid with the numbers 1-9 - each row has 1-9 (without repetition)

- each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints
(1) $6,7,9$

Fill in the grid with the numbers 1-9 \square each row has 1-9 (without repetition)

- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

How many next states? What are they?

Fill in the grid with the numbers 1-9 - each row has 1-9 (without repetition)

- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

What are the next states?

Fill in the grid with the numbers 1-9 \square each row has 1-9 (without repetition)

- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states

- pick an open entry
- try all possible numbers that meet constraints

$$
\text { (2.) } 6,7,8,9
$$

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints
$7,8,9$

Fill in the grid with the numbers 1-9 - each row has 1-9 (without repetition)

- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

Fill in the grid with the numbers 1-9 \square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints
$7,8,9$

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

Now what?

Try another branch, i.e. go back to a place where we had a decision and try a different one

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

Best first Sudoku search

DFS and BFS will choose entries (and numbers within those entries) randomly

Pick the entry that is MOST constrained

People often try and find entries where only one option exists and only fill it in that way (very little search)

Generate next states: - pick an open entry - try all possible numbers that meet constraints

Representing the Sudoku board

