
3/8/16	

1	

CFGS – TAKE 2
David Kauchak
CS30 – Spring 2016

Admin

Lab/neural net package?

Assignment 6

Grammars

Language view:
A grammar is a set of structural rules that govern
the composition of sentences, phrases and words.

Computational view:
A grammar (often called a “formal grammar”) is a
set of rules that describe what strings are valid in a
formal language.

CFG production rules

S → NP VP S → NP VP

left hand side
(single symbol)

right hand side
(one or more symbols)

3/8/16	

2	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

CFGs formally

G = (NT, T, P, S)

NT: finite set of nonterminal symbols

T: finite set of terminal symbols, NT and T are disjoint

P: finite set of productions of the form

A → α, A ∈ NT and α ∈ (T ∪ NT)*

S ∈ NT: start symbol

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

S

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

S

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

3/8/16	

3	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

3/8/16	

4	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

I really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

I really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

No more rules apply, so we’re done!

3/8/16	

5	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

I really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really, B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really, really, B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

I really, really, … like cs

Grammars describe a language, i.e. the
strings (aka sentences) that are part of
that language

3/8/16	

6	

What language does this represent?

S → aS
S → E
E → bE
E → b

What language does this represent?

S → aS
S → E
E → bE
E → b

S
Two options

What language does this represent?

S → aS
S → E
E → bE
E → b

aS

S

What language does this represent?

S → aS
S → E
E → bE
E → b

aaS

aS

3/8/16	

7	

What language does this represent?

S → aS
S → E
E → bE
E → b

aaaS

aaS

- Can do this as many times as we want
- Keeps adding more a’s to the front

What language does this represent?

S → aS
S → E
E → bE
E → b

aaaE

aaaS

Eventually, apply second rule

What language does this represent?

S → aS
S → E
E → bE
E → b

aaaE

Two options

What language does this represent?

S → aS
S → E
E → bE
E → b

aaaE

aaabE

3/8/16	

8	

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabE

aaabbE

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabbE

aaabbbE

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabbE

aaabb…bE

- Can do this as many times as we want
- Keeps adding more b’s to the end

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabb…bE

aaabb…bb

Eventually, apply second rule

3/8/16	

9	

What language does this represent?

S → aS
S → E
E → bE
E → b

aaabb…bE

aaabb…bb

Grammar represents all strings with zero or more
a’s followed by one or more b’s

Notational convenience

S → aS
S → E
E → bE
E → b

S → aS | E
E → bE | b

Often many ways to write the same language

S → aS | E
E → bE | b

S → aS | E
E → Eb | b

S → aS | aaS | E
E → Eb | b

What languages do these represent?

S → aSb
S → ab

S → aEa | bEb
E → Ea | Eb | a | b

S → aaS | abS | baS | bbS | ε

nothing

3/8/16	

10	

What languages do these represent?

S → aSb
S → ab

S → aaS | abS | baS | bbS | ε

all strings of a’s and b’s that start
and end with the same letter

strings of a’s followed by an
equal number of b’s

all strings of a’s and b’s with even length

S → aEa | bEb
E → Ea | Eb | a | b

Writing CFGs

Write a CFG to represent the language containing all
strings that start with a.

S → aT
T → Ta | Tb | ε

Writing CFGs

Write a CFG to represent the language containing all
strings with exactly two bs.

S → TbTbT
T → Ta |ε

CFG: Another example

Many possible CFGs for English, here is an example
(fragment):

S → NP VP

VP → V NP

NP → DetP N | DetP AdjP N

AdjP → Adj | Adv AdjP

N → boy | girl

V → sees | likes

Adj → big | small

Adv → very

DetP → a | the

3/8/16	

11	

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

S

What can we do?

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

S

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

NP VP

What can we do?

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

NP VP

3/8/16	

12	

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

DetP N VP

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

DetP N VP

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

the boy VP

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

the boy likes NP

3/8/16	

13	

Derivations in a CFG

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

the boy likes a girl

Derivations in a CFG:
Order of Derivation Irrelevant

S → NP VP
VP → V NP
NP → DetP N | DetP AdjP N
AdjP → Adj | Adv AdjP
N → boy | girl
V → sees | likes
Adj → big | small
Adv → very
DetP → a | the

NP VP

DetP N VP NP V NP

the boy likes a girl

Derivations of CFGs

Derivation history shows a tree:

the boy likes a girl

boy the likes

DetP

NP

girl a

NP

DetP

S

VP

N

N

V

Another CFG example

S → NP VP

VP → V | V ADV

NP → ART PreNP

PreNP → N | ADJ PreNP

ADV → furiously | soothingly | intentionally

ADJ → colorless | green | smelly

ART → the | a

V → sleeps | eats | swims | sprints

N → idea | bagel | milk | cow

What can we generate?

3/8/16	

14	

One last example

S → N
S → (S)
S → S + S | S - S
S → S * S | S / S
N → 0 | 1 | 2 | … | 9
N → N N

What language does
this CFG represent?

One last example

S → N
S → (S)
S → S + S | S - S
S → S * S | S / S
N → 0 | 1 | 2 | … | 9
N → N N

All arithmetic expressions!

Parsing

Given a CFG and a sentence, determine the possible
parse tree(s)

S -> NP VP
NP -> N
NP -> PRP
NP -> N PP
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

I eat sushi with tuna

What parse trees are possible for this
sentence?

How did you do it?

What if the grammar is much larger?

Parsing

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN N

PP NP

VP

S
S -> NP VP
NP -> PRP
NP -> N PP
NP -> N
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

What is the difference between these parses?

3/8/16	

15	

CFGs implemented

