

Admin Lab/neural net package? Assignment 6

Grammars

Language view:

A grammar is a set of structural rules that govern the composition of sentences, phrases and words.

Computational view:

A grammar (often called a "formal grammar") is a set of rules that describe what strings are valid in a formal language.

CFG production rules

$S \rightarrow NP VP$

left hand side right hand side (single symbol) (one or more symbols)

CFG example

 $\mathsf{S} \to \mathsf{A} \; \mathsf{B} \; \mathsf{C}$

 $A \rightarrow I$

 $B \rightarrow really$

 $B \rightarrow really, B$

 $C \rightarrow like cs$

CFGs formally

G = (NT, T, P, S)

NT: finite set of nonterminal symbols

T: finite set of terminal symbols, NT and T are disjoint

P: finite set of productions of the form $A \rightarrow \alpha, \ A \in NT \ and \ \alpha \in (T \cup NT)^*$

 $\mathbf{S} \in \mathsf{NT}$: start symbol

CFG example

Grammars "generate" or "derive" strings:

S

 $S \rightarrow A B C$

 $A \rightarrow I$

 $B \rightarrow really$

 $B \rightarrow really, B$

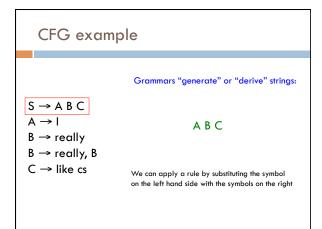
 $C \rightarrow like cs$

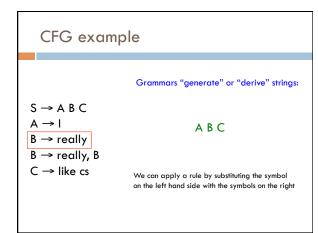
CFG example

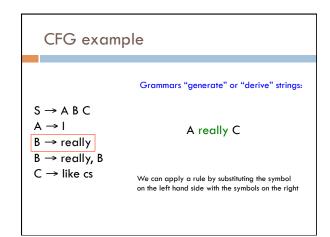
Grammars "generate" or "derive" strings:

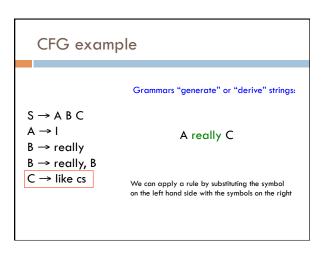
S

 $S \rightarrow A B C$

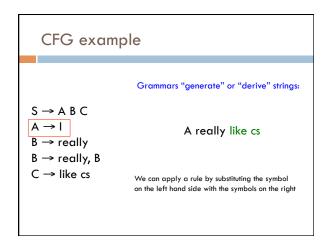

 $A \rightarrow I$

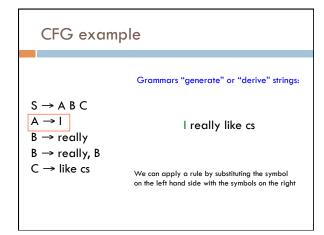

 $B \rightarrow really$

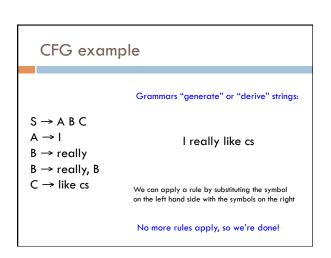

 $B \rightarrow really, B$


 $C \rightarrow like cs$

We can apply a rule by substituting the symbol on the left hand side with the symbols on the right $% \left(1\right) =\left(1\right) ^{2}$







CFG example

Grammars "generate" or "derive" strings:

 $S \rightarrow A B C$

 $A \rightarrow I$

I really like cs

 $B \rightarrow really$

 $B \rightarrow really, B$

 $C \rightarrow like cs$

We can apply a rule by substituting the symbol on the left hand side with the symbols on the right

CFG example

Grammars "generate" or "derive" strings:

A really, B C

 $S \rightarrow A B C$

 $A \rightarrow I$

A -> 1

 $B \rightarrow really$ $B \rightarrow really, B$

 $C \rightarrow like cs$

We can apply a rule by substituting the symbol on the left hand side with the symbols on the right

CFG example

Grammars "generate" or "derive" strings:

 $S \rightarrow A B C$

 $A \rightarrow I$

 $B \rightarrow really$

 $B \rightarrow really, B$

 $C \rightarrow like cs$

A really, really, B C

We can apply a rule by substituting the symbol on the left hand side with the symbols on the right

CFG example

Grammars describe a language, i.e. the strings (aka sentences) that are part of that language

 $S \rightarrow A B C$ $A \rightarrow I$

 $B \rightarrow really$

 $B \rightarrow really, B$

B I really, really, ... like cs

 $C \rightarrow like cs$

What language does this represent?

 $S \rightarrow \alpha S$ $S \rightarrow E$ $E \rightarrow bE$

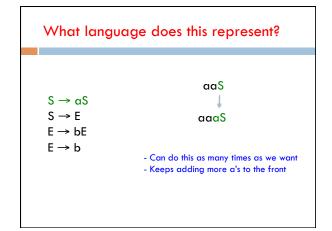
 $E \rightarrow bE$ $E \rightarrow b$

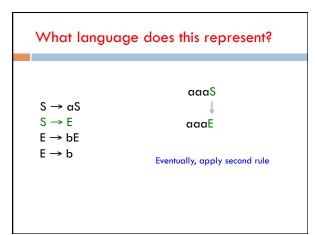
What language does this represent?

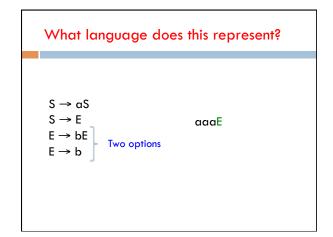
 $S \rightarrow aS$ $S \rightarrow E$ $E \rightarrow bE$ $E \rightarrow b$

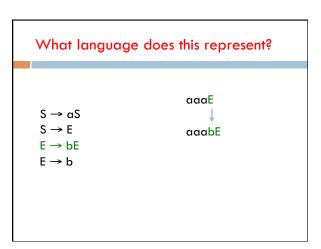
What language does this represent?

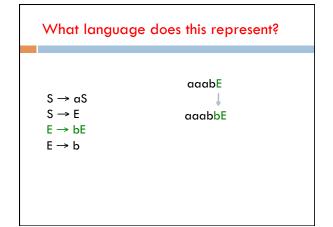
S

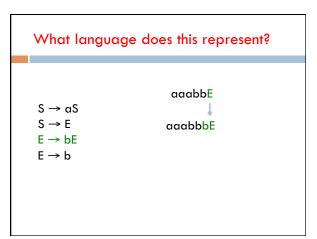

αS

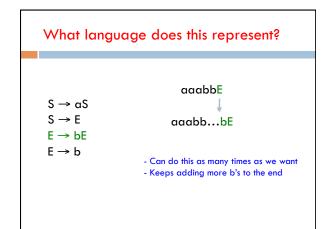

 $S \rightarrow \alpha S$ $S \rightarrow E$

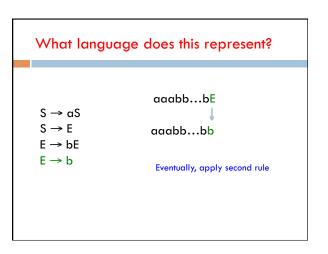

 $E \rightarrow bE$ $E \rightarrow b$ What language does this represent?


 $S \rightarrow \alpha S$ $S \rightarrow E$ $E \rightarrow bE$


 $E \rightarrow bE$ $E \rightarrow b$ aS ↓ aaS







What language does this represent?

Grammar represents all strings with zero or more a's followed by one or more b's

Notational convenience

$$S \rightarrow \alpha S$$

 $S \rightarrow E$
 $E \rightarrow bE$
 $E \rightarrow b$
 $S \rightarrow \alpha S \mid E$
 $E \rightarrow bE \mid b$

Often many ways to write the same language

$$S \rightarrow \alpha S \mid E$$

 $E \rightarrow bE \mid b$
 $S \rightarrow \alpha S \mid E$
 $E \rightarrow Eb \mid b$
 $S \rightarrow \alpha S \mid \alpha \alpha S \mid E$
 $E \rightarrow Eb \mid b$

What languages do these represent?

What languages do these represent?

```
s \rightarrow aEa | bEb and end with the same letter

E \rightarrow Ea | Eb | a | b

S \rightarrow aSb strings of a's followed by an equal number of b's

S \rightarrow aaS | abS | baS | bbS | \varepsilon all strings of a's and b's with even length
```

Writing CFGs

Write a CFG to represent the language containing all strings that start with a.

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{a} \mathbf{T} \\ \mathbf{T} &\rightarrow \mathbf{T} \mathbf{a} \ | \ \mathbf{T} \mathbf{b} \ | \ \mathcal{E} \end{split}$$

Writing CFGs

Write a CFG to represent the language containing all strings with exactly two bs.

$$S \rightarrow TbTbT$$
 $T \rightarrow Ta \mid \varepsilon$

CFG: Another example

Many possible CFGs for English, here is an example (fragment):

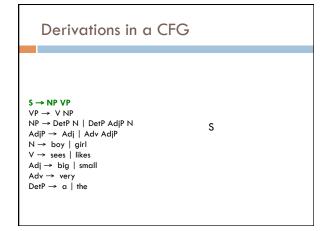
$$S \rightarrow NP VP$$

$$VP \rightarrow V NP$$

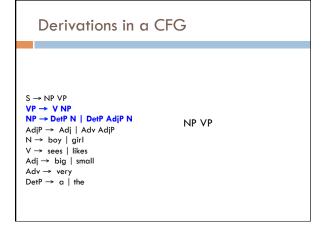
 $NP \rightarrow DetP N \mid DetP AdjP N$

 $AdjP \rightarrow \ Adj \ | \ Adv \ AdjP$

 $N \to \ boy \ | \ girl$


 $V \rightarrow \ sees \ | \ likes$

 $\mathsf{Adj} \to \mathsf{big} \mid \mathsf{small}$


 $\mathsf{Adv} \to \mathsf{very}$

 $DetP \rightarrow \ \alpha \ | \ the$

Derivations in a CFG $S \rightarrow NP \ VP$ $VP \rightarrow V \ NP$ $NP \rightarrow DetP \ N \ | \ DetP \ AdjP \ N$ $AdjP \rightarrow Adj \ | \ Adv \ AdjP$ $N \rightarrow boy \ | \ girl$ $V \rightarrow sees \ | \ likes$ $Adj \rightarrow big \ | \ small$ $Adv \rightarrow very$ $DetP \rightarrow a \ | \ the$ What can we do?

Derivations in a CFG $S \rightarrow NP \ VP$ $VP \rightarrow V \ NP$ $NP \rightarrow DetP \ N \ | \ DetP \ AdjP \ N$ $AdjP \rightarrow Adj \ | \ Adv \ AdjP$ $N \rightarrow boy \ | \ girl$ $V \rightarrow sees \ | \ likes$ $Adj \rightarrow big \ | \ small$ $Adv \rightarrow very$ $DetP \rightarrow \alpha \ | \ the$ What can we do?

Derivations in a CFG

 $S \rightarrow NP VP$ $S \rightarrow NP'V$ $VP \rightarrow VNP$ $NP \rightarrow DetP N \mid DetP AdjP N$ $AdjP \rightarrow Adj \mid Adv AdjP$ $N \rightarrow boy \mid girl$ $V \rightarrow sees \mid likes$ Adj \rightarrow big | small Adv \rightarrow very DetP \rightarrow a | the

DetP N VP

Derivations in a CFG

 $S \rightarrow NP VP$ $VP \rightarrow VNP$ $NP \rightarrow DetPN \mid DetPAdjPN$ AdjP → Adj | Adv AdjP N → boy | girl V → sees | likes

Adj → big | small Adv → very DetP → a | the

DetP N VP

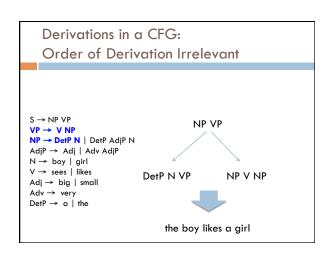
the boy likes NP

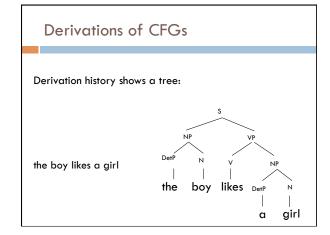
Derivations in a CFG

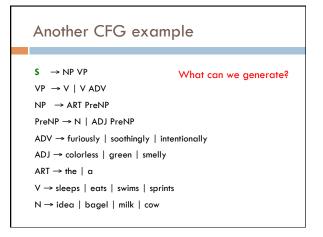
 $S \rightarrow NP VP$ VP → V NP NP → DetP N | DetP AdjP N $AdjP \rightarrow Adj \mid Adv AdjP$ $N \rightarrow boy \mid girl$

the boy VP

 $N \rightarrow boy \mid giri$ $V \rightarrow sees \mid likes$ $Adj \rightarrow big \mid small$ $Adv \rightarrow very$ $DetP \rightarrow a \mid the$


Derivations in a CFG


 $S \rightarrow NP VP$


 $VP \rightarrow VNP$ $NP \rightarrow DetP N \mid DetP AdjP N$

NP → Detr N | Detr Aqı AdiP → Adi | Adv AdiP N → boy | girl V → sees | likes Adi → big | small Adv → very DetP → a | the

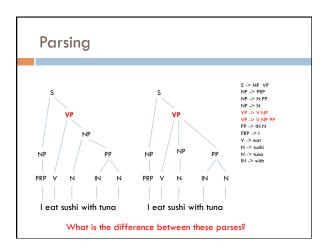
Derivations in a CFG $S \rightarrow NP \ VP$ $VP \rightarrow V \ NP$ $NP \rightarrow DetP \ N \mid DetP \ AdjP \ N$ $AdjP \rightarrow Adj \mid Adv \ AdjP$ $N \rightarrow boy \mid girl$ $V \rightarrow sees \mid likes$ $Adj \rightarrow big \mid small$ $Adv \rightarrow very$ $DetP \rightarrow \alpha \mid the$

One last example

 $S \rightarrow N$ $S \rightarrow (S)$ What language does $S \rightarrow S + S \mid S - S$ this CFG represent? $S \rightarrow S * S | S / S$ $N \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9$ $N \rightarrow N N$

One last example

 $S \rightarrow N$ $S \rightarrow (S)$ All arithmetic expressions! $S \rightarrow S + S \mid S - S$ $S \rightarrow S * S | S / S$ $N \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9$ $N \rightarrow N N$


Given a CFG and a sentence, determine the possible parse tree(s) I eat sushi with tuna What parse trees are possible for this

S -> NP VP
NP -> N
NP -> PRP
NP -> PRP
NP -> N PP
VP -> V NP
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with How did you do it?

sentence?

Parsing

What if the grammar is much larger?

CFGs implemented	