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Course feedback 
 

I like thinking in a way that is 
opposite from what I normally do in 
humanities courses. I enjoy the 
creativity of getting to the end goal 
by means that may be the same or 
different from the other people in the 
class. 

Course feedback 

we create something that is 
somewhat useful! somewhat 
understand how things / programs 
on our computers work 

Course feedback 

I think I would benefit more if you could 
break down the assignments. Rather 
than having one large weekly 
assignment, having it due by parts (like 
assignment 5 is) can help me stay on 
track and keep it more manageable. 

Course feedback 

Somehow increase the use of 
Piazza. The mentor sessions don't 
work well with my schedule, and I 
wish I could see what people are 
asking about. 
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Course feedback 

It seems like it would be helpful for 
the mentors to have the solutions 
before lab because often they aren't 
sure what the correct answer is and 
spend a significant amount of time 
trying to figure it out themselves. 

Course feedback 

More info of how coding is done in the real 
world and it's applications and 
purposes...however I'm guessing that that 
will be covered in the weeks to come. 

Optional parameters 

!  Look at optional_parameters.py 

Artificial Neural Networks 
Node (Neuron) 

Edge (synapses) 
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W is the strength of signal sent between A and B. 

 

If A fires and w is positive, then A stimulates B. 

 

If A fires and w is negative, then A inhibits B. 

Weight w Node A Node B 

(neuron) (neuron) 

predicted y 

Input x1 

Input x2 

Input x3 

Input x4 

Weight w1 

Weight w2 

Weight w3 

Weight w4 

A Single Neuron/Perceptron 

€ 

∑

€ 

g(in)

threshold function 

Each input contributes: 
xi * wi 

€ 

in = wi
i
∑ xi

Training neural networks 

T = ? predicted y 

Input x1 

Input x3 

w1 = ? 

w3 = ? 

Input x2 
w2 = ? 

x1 x2 x3 x1 and 
x2 

0 0 0 1 

0 1 0 0 

1 0 0 1 

1 1 0 0 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 1 0 

1.  start with some initial weights and 
thresholds 

2.  show examples repeatedly to NN 
3.  update weights/thresholds by 

comparing NN predicted to actual 
predicted 

Perceptron learning algorithm 

repeat until you get all examples right: 
 
-  for each “training” example: 

-  calculate current prediction on example 
-  if wrong: 

-  update weights and threshold towards getting this 
example correct 
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1 

-1 

1 

0.5 

Perceptron learning 

Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 

? 

1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 
What could we adjust to make it right? 

Weighted sum is 
0.5, which is not 
equal or larger than 
the threshold 

1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 
This weight doesn’t matter, so don’t change 

1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 
Could increase any of these weights 
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1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 
Could decrease the threshold 

Perceptron update rule 
-  if wrong: 

-  update weights and threshold towards getting this 
example correct 

-  if wrong: 

Δwi = λ * (actual - predicted) * xi 

wi = wi + Δwi 

1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 

Δwi = λ * (actual - predicted) * xi 

What does this do in this case? 

wi = wi + Δwi 

1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 

Δwi = λ * (actual - predicted) * xi 

causes us to increase the weights! 

wi = wi + Δwi 
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Perceptron learning 

1 
Threshold of 1 

predicted 

actual 

0 

Δwi = λ * (actual - predicted) * xi 

What if predicted = 1 and actual = 0? 

wi = wi + Δwi 

Perceptron learning 

1 
Threshold of 1 

predicted 

actual 

0 

Δwi = λ * (actual - predicted) * xi 

We’re over the threshold, so want to decrease weights: 
actual - predicted = -1 

wi = wi + Δwi 

1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 

Δwi = λ * (actual - predicted) * xi 

What does this do? 

wi = wi + Δwi 

1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 

Δwi = λ * (actual - predicted) * xi 

Only adjust those weights that 
actually contributed! 

wi = wi + Δwi 
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1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 

Δwi = λ * (actual - predicted) * xi 

What does this do? 

wi = wi + Δwi 

1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 

Δwi = λ * (actual - predicted) * xi 

“learning rate”: value between 0 and 1 (e.g 0.1) 
adjusts how abrupt the changes are to the model 

wi = wi + Δwi 

1 

-1 

1 

0.5 

Perceptron learning 

0 
Threshold of 1 

1 

1 

0 

1 

predicted 

actual 

1 

Δwi = λ * (actual - predicted) * xi 

What about the threshold? 

wi = wi + Δwi 

predicted y 

Input x1 

Input x2 

Input x3 

Weight w1 

Weight w2 

Weight w3 Threshold of t 

1 if wixi
i=1

3

∑ ≥ t

predicted y 

Input x1 

Input x2 

Input x3 

Weight w1 

Weight w2 

Weight w3 Threshold of 0 

1 

1 if w4 + wixi
i=1

3

∑ ≥ 0

Weight w4 
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predicted y 

Input x1 

Input x2 

Input x3 

Weight w1 

Weight w2 

Weight w3 Threshold of t 

1 if wixi
i=1

3

∑ ≥ t

predicted y 

Input x1 

Input x2 

Input x3 

Weight w1 

Weight w2 

Weight w3 Threshold of 0 

1 

1 if w4 + wixi
i=1

3

∑ ≥ 0

Weight w4 

equivalent when w4 = -t 

Perceptron learning algorithm 

initialize weights of the model randomly 
 
repeat until you get all examples right: 
 
-  for each “training” example (in a random order): 

-  calculate current prediction on the example 
-  if wrong: 

wi = wi + λ * (actual - predicted) * xi 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

Input x1 

Input x2 

W1  

1 

W2  

W3  

initialize with random weights 

λ = 0.1 x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

Input x1 

Input x2 

W1 = 0.2  

1 

W2 = 0.5  

W3 = 0.1 

λ = 0.1 
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x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

0 

W1 = 0.2  

1 

W2 = 0.5  

W3 = 0.1 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Right or wrong? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

0 

W1 = 0.2  

1 

W2 = 0.5  

W3 = 0.1 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Wrong 

sum =  0.3: predicted 1 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

0 

W1 = 0.2  

1 

W2 = 0.5  

W3 = 0.1 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

new weights? 

sum =  0.3: predicted 1 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

0 

W1 = 0.1  

1 

W2 = 0.5  

W3 = 0.0 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

decrease (0-1=-1) all non-zero xi by 0.1 

sum =  0.3: predicted 1 
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x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

1 

W1 = 0.1  

1 

W2 = 0.5  

W3 = 0.0 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Right or wrong? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

0 

W1 = 0.1  

1 

W2 = 0.5  

W3 = 0.0 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Right.  No update! 

sum =  0.6: predicted 1 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

1 

W1 = 0.1  

1 

W2 = 0.5  

W3 = 0.0 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Right or wrong? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

1 

W1 = 0.1  

1 

W2 = 0.5  

W3 = 0.0 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Wrong 

sum =  0.5: predicted 1 



3/3/16 

12 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

1 

W1 = 0.1  

1 

W2 = 0.5  

W3 = 0.0 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

sum =  0.5: predicted 1 

new weights? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

1 

W1 = 0.1  

1 

W2 = 0.4  

W3 = -0.1 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

sum =  0.5: predicted 1 

decrease (0-1=-1) all non-zero xi by 0.1 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

0 

W1 = 0.1  

1 

W2 = 0.4  

W3 = -0.1 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Right or wrong? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

0 

W1 = 0.1  

1 

W2 = 0.4  

W3 = -0.1 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Right. No update!  

sum =  -0.1: predicted 0 
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x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

1 

W1 = 0.1  

1 

W2 = 0.4  

W3 = -0.1 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Right or wrong? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

1 

W1 = 0.1  

1 

W2 = 0.4  

W3 = -0.1 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Wrong 

sum =  0.3: predicted 1 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

1 

W1 = 0.1  

1 

W2 = 0.3  

W3 = -0.2 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

sum =  0.3: predicted 1 

decrease (0-1=-1) all non-zero xi by 0.1 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

1 

W1 = 0.1  

1 

W2 = 0.3  

W3 = -0.2 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

sum =  0.2: predicted 1 

Right.  No update! 
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x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

0 

W1 = 0.1  

1 

W2 = 0.3  

W3 = -0.2 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

sum =  -0.2: predicted 0 

Right.  No update! 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

0 

W1 = 0.1  

1 

W2 = 0.3  

W3 = -0.2 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

sum =  -0.1: predicted 0 

Right.  No update! 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

0 

W1 = 0.1  

1 

W2 = 0.3  

W3 = -0.2 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

Are they all right? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

1 

W1 = 0.1  

1 

W2 = 0.3  

W3 = -0.2 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

sum =  0.1: predicted 1 

Wrong 
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x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

0 

1 

W1 = 0.1  

1 

W2 = 0.2  

W3 = -0.3 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

sum =  0.1: predicted 1 

decrease (0-1=-1) all non-zero xi by 0.1 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

0 

W1 = 0.1  

1 

W2 = 0.2  

W3 = -0.3 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

sum =  0.1: predicted 1 

Are they all right? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

predicted y 

1 

1 

W1 = 0.1  

1 

W2 = 0.2  

W3 = -0.3 

λ = 0.1 

wi = wi + λ * (actual - predicted) * xi 

if wrong: 

We’ve learned AND! 

Perceptron learning 

A few missing details, but not much more than this 
 
Keeps adjusting weights as long as it makes mistakes 
 
If the training data is linearly separable the perceptron 
learning algorithm is guaranteed to converge to the 
“correct” solution (where it gets all examples right) 



3/3/16 

16 

Linearly Separable 
x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

A data set is linearly separable if you can 
separate one example type from the with a 
line other 

Which of these are linearly separable? 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x1 

x2 

x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

x1 

x2 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

x1 

x2 

Which of these are linearly separable? 

XOR 
Input x1 

Input x2 

?  

? 

?  

? 

T = ? 

T = ? 

T = ? 
? 

? 

x1 x2 x1 xor x2 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

predicted = x1 xor x2 

XOR 
Input x1 

Input x2 

1  

-1 

-1  

1 

T = 1 

T = 1 

T = 1 
1 

1 

x1 x2 x1 xor x2 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

predicted = x1 xor x2 
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Learning in multilayer networks 
Similar idea as perceptrons 
 
Examples are presented to the network 
 
If the network computes an predicted that matches 
the desired, nothing is done 
 
If there is an error, then the weights are adjusted to 
balance the error 

Learning in multilayer networks 
Key idea for perceptron learning: if the perceptron’s 
predicted is different than the expected predicted, update 
the weights 
 
Challenge: for multilayer networks, we don’t know what the 
expected predicted/error is for the internal nodes 

perceptron multi-layer network 

expected 
predicted? 

Backpropagation 
Say we get it wrong, and we now want to update the weights 

We can update this layer just as 
if it were a perceptron 

Backpropagation 
Say we get it wrong, and we now want to update the weights 

“back-propagate” the error (actual – predicted): 
 
Assume all of these nodes were responsible for 
some of the error 
 
How can we figure out how much they were 
responsible for? 
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Backpropagation 
Say we get it wrong, and we now want to update the weights 

error (actual – predicted) 

w1 
w2 w3 

error for node i is: wi error 

Backpropagation 
Say we get it wrong, and we now want to update the weights 

Update these weights and 
continue the process back 
through the network 

Backpropagation 
calculate the error at the predicted layer 
 
backpropagate the error up the network 
 
Update the weights based on these errors 

Can be shown that this is the appropriate thing to do based 
on our assumptions 
 
That said, many neuroscientists don’t think the brain does 
backpropagation of errors 

Neural network regression 
Given enough hidden nodes, you can learn any 
function with a neural network 
 
Challenges: 

" overfitting – learning only the training data and not 
learning to generalize 

" picking a network structure 

" can require a lot of tweaking of parameters, 
preprocessing, etc. 



3/3/16 

19 

Popular for digit recognition and many computer vision tasks 
http://yann.lecun.com/exdb/mnist/ 
 

Cog sci people like NNs 

Expression/emotion recognition 
" Gary Cottrell et al 

Language learning 

Interpreting Satellite Imagery for 
Automated Weather Forecasting 

What NNs learned from youtube 

http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-
evidence-of-machine-learning.html 
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What NNs learned from youtube 

trained on 10M snapshots from youtube videos 
 
NN with 1 billion connections 
 
16,000 processors 
 

Summary 

Perceptrons, one layer networks, are insufficiently 
expressive 
 
Multi-layer networks are sufficiently expressive and 
can be trained by error back-propogation 
 
Many applications including speech, driving, hand 
written character recognition, fraud detection, 
driving, etc. 

Our python NN module 
Data: 

x1 x2 x3 x1 and x2 

0 0 0 1 

0 1 0 0 

1 0 0 1 

1 1 0 0 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 1 0 

table = \ 
[ ([0.0, 0.0, 0.0], [1.0]), 
  ([0.0, 1.0, 0.0], [0.0]), 
  ([1.0, 0.0, 0.0], [1.0]), 
  ([1.0, 1.0, 0.0], [0.0]), 
  ([0.0, 0.0, 1.0], [1.0]), 
  ([0.0, 1.0, 1.0], [1.0]), 
  ([1.0, 0.0, 1.0], [1.0]), 
  ([1.0, 1.0, 1.0], [0.0]) ] 

Data format 

table = \ 
[ ([0.0, 0.0, 0.0], [1.0]), 
  ([0.0, 1.0, 0.0], [0.0]), 
  ([1.0, 0.0, 0.0], [1.0]), 
  ([1.0, 1.0, 0.0], [0.0]), 
  ([0.0, 0.0, 1.0], [1.0]), 
  ([0.0, 1.0, 1.0], [1.0]), 
  ([1.0, 0.0, 1.0], [1.0]), 
  ([1.0, 1.0, 1.0], [0.0]) ] 

list of examples 

( [0.0, 0.0, 0.0], [1.0] ) 
input list predicted list 

example = tuple 
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Training on the data 

Construct a new network: 
>>> nn = NeuralNet(3, 2, 1) 

constructor: constructs a 
new NN object 

input nodes 

hidden nodes 

predicted nodes 

Training on the data 

Construct a new network: 
>>> nn = NeuralNet(3, 2, 1) 

3 input nodes 2 hidden nodes 

1 predicted node 

Training on the data 
>>> nn.train(table) 
error 0.195200       
error 0.062292       
error 0.031077       
error 0.019437       
error 0.013728       
error 0.010437       
error 0.008332       
error 0.006885       
error 0.005837       
error 0.005047 

by default trains 1000 iteration and prints out 
error values every 100 iterations 

After training, can look at the weights 

>>> nn.train(table) 
>>> nn.get_IH_weights() 
[[-3.3435628797862624, -0.272324373735495],  
 [-4.846203738642956, -4.601230952566068],  
 [3.4233831101145973, 0.573534695637572], 
 [2.9388429644152128, 1.8509761272713543]] 
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After training, can look at the weights 

>>> nn.train(table) 
>>> nn.get_IH_weights() 
[[-3.3435628797862624, -0.272324373735495],  
 [-4.846203738642956, -4.601230952566068],  
 [3.4233831101145973, 0.573534695637572], 
 [2.9388429644152128, 1.8509761272713543]] 

After training, can look at the weights 

>>> nn.get_HO_weights() 
[[8.116192424400454],  
 [5.358094903107918], 
 [-4.373829543609533]] 

Many parameters to play with Calling with optional parameters 

>>> nn.train(table, iterations = 5, printInterval = 1) 
error 0.005033       
error 0.005026       
error 0.005019       
error 0.005012       
error 0.005005 
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Train vs. test 
train_data test_data 

>>> nn.train(train_data) 
>>> nn.test(test_data) 

http://www.sciencebytes.org/2011/05/03/
blueprint-for-the-brain/ 


