
3/3/16

1

Neural Networks 2

David Kauchak
CS30
Spring 2016

Course feedback

Course feedback Course feedback

3/3/16

2

Course feedback

I like thinking in a way that is
opposite from what I normally do in
humanities courses. I enjoy the
creativity of getting to the end goal
by means that may be the same or
different from the other people in the
class.

Course feedback

we create something that is
somewhat useful! somewhat
understand how things / programs
on our computers work

Course feedback

I think I would benefit more if you could
break down the assignments. Rather
than having one large weekly
assignment, having it due by parts (like
assignment 5 is) can help me stay on
track and keep it more manageable.

Course feedback

Somehow increase the use of
Piazza. The mentor sessions don't
work well with my schedule, and I
wish I could see what people are
asking about.

3/3/16

3

Course feedback

It seems like it would be helpful for
the mentors to have the solutions
before lab because often they aren't
sure what the correct answer is and
spend a significant amount of time
trying to figure it out themselves.

Course feedback

More info of how coding is done in the real
world and it's applications and
purposes...however I'm guessing that that
will be covered in the weeks to come.

Optional parameters

!  Look at optional_parameters.py

Artificial Neural Networks
Node (Neuron)

Edge (synapses)

3/3/16

4

W is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

Weight w Node A Node B

(neuron) (neuron)

predicted y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

A Single Neuron/Perceptron

€

∑

€

g(in)

threshold function

Each input contributes:
xi * wi

€

in = wi
i
∑ xi

Training neural networks

T = ? predicted y

Input x1

Input x3

w1 = ?

w3 = ?

Input x2
w2 = ?

x1 x2 x3 x1 and
x2

0 0 0 1

0 1 0 0

1 0 0 1

1 1 0 0

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 0

1.  start with some initial weights and
thresholds

2.  show examples repeatedly to NN
3.  update weights/thresholds by

comparing NN predicted to actual
predicted

Perceptron learning algorithm

repeat until you get all examples right:

-  for each “training” example:

-  calculate current prediction on example
-  if wrong:

-  update weights and threshold towards getting this
example correct

3/3/16

5

1

-1

1

0.5

Perceptron learning

Threshold of 1

1

1

0

1

predicted

actual

1

?

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1
What could we adjust to make it right?

Weighted sum is
0.5, which is not
equal or larger than
the threshold

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1
This weight doesn’t matter, so don’t change

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1
Could increase any of these weights

3/3/16

6

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1
Could decrease the threshold

Perceptron update rule
-  if wrong:

-  update weights and threshold towards getting this
example correct

-  if wrong:

Δwi = λ * (actual - predicted) * xi

wi = wi + Δwi

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

What does this do in this case?

wi = wi + Δwi

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

causes us to increase the weights!

wi = wi + Δwi

3/3/16

7

Perceptron learning

1
Threshold of 1

predicted

actual

0

Δwi = λ * (actual - predicted) * xi

What if predicted = 1 and actual = 0?

wi = wi + Δwi

Perceptron learning

1
Threshold of 1

predicted

actual

0

Δwi = λ * (actual - predicted) * xi

We’re over the threshold, so want to decrease weights:
actual - predicted = -1

wi = wi + Δwi

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

What does this do?

wi = wi + Δwi

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

Only adjust those weights that
actually contributed!

wi = wi + Δwi

3/3/16

8

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

What does this do?

wi = wi + Δwi

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

“learning rate”: value between 0 and 1 (e.g 0.1)
adjusts how abrupt the changes are to the model

wi = wi + Δwi

1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

What about the threshold?

wi = wi + Δwi

predicted y

Input x1

Input x2

Input x3

Weight w1

Weight w2

Weight w3 Threshold of t

1 if wixi
i=1

3

∑ ≥ t

predicted y

Input x1

Input x2

Input x3

Weight w1

Weight w2

Weight w3 Threshold of 0

1

1 if w4 + wixi
i=1

3

∑ ≥ 0

Weight w4

3/3/16

9

predicted y

Input x1

Input x2

Input x3

Weight w1

Weight w2

Weight w3 Threshold of t

1 if wixi
i=1

3

∑ ≥ t

predicted y

Input x1

Input x2

Input x3

Weight w1

Weight w2

Weight w3 Threshold of 0

1

1 if w4 + wixi
i=1

3

∑ ≥ 0

Weight w4

equivalent when w4 = -t

Perceptron learning algorithm

initialize weights of the model randomly

repeat until you get all examples right:

-  for each “training” example (in a random order):

-  calculate current prediction on the example
-  if wrong:

wi = wi + λ * (actual - predicted) * xi

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

Input x1

Input x2

W1

1

W2

W3

initialize with random weights

λ = 0.1 x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

Input x1

Input x2

W1 = 0.2

1

W2 = 0.5

W3 = 0.1

λ = 0.1

3/3/16

10

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

0

W1 = 0.2

1

W2 = 0.5

W3 = 0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

0

W1 = 0.2

1

W2 = 0.5

W3 = 0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Wrong

sum = 0.3: predicted 1

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

0

W1 = 0.2

1

W2 = 0.5

W3 = 0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

new weights?

sum = 0.3: predicted 1

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

0

W1 = 0.1

1

W2 = 0.5

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

decrease (0-1=-1) all non-zero xi by 0.1

sum = 0.3: predicted 1

3/3/16

11

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

1

W1 = 0.1

1

W2 = 0.5

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

0

W1 = 0.1

1

W2 = 0.5

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right. No update!

sum = 0.6: predicted 1

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

1

W1 = 0.1

1

W2 = 0.5

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

1

W1 = 0.1

1

W2 = 0.5

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Wrong

sum = 0.5: predicted 1

3/3/16

12

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

1

W1 = 0.1

1

W2 = 0.5

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum = 0.5: predicted 1

new weights?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

1

W1 = 0.1

1

W2 = 0.4

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum = 0.5: predicted 1

decrease (0-1=-1) all non-zero xi by 0.1

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

0

W1 = 0.1

1

W2 = 0.4

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

0

W1 = 0.1

1

W2 = 0.4

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right. No update!

sum = -0.1: predicted 0

3/3/16

13

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

1

W1 = 0.1

1

W2 = 0.4

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

1

W1 = 0.1

1

W2 = 0.4

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Wrong

sum = 0.3: predicted 1

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

1

W1 = 0.1

1

W2 = 0.3

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum = 0.3: predicted 1

decrease (0-1=-1) all non-zero xi by 0.1

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

1

W1 = 0.1

1

W2 = 0.3

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum = 0.2: predicted 1

Right. No update!

3/3/16

14

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

0

W1 = 0.1

1

W2 = 0.3

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum = -0.2: predicted 0

Right. No update!

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

0

W1 = 0.1

1

W2 = 0.3

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum = -0.1: predicted 0

Right. No update!

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

0

W1 = 0.1

1

W2 = 0.3

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Are they all right?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

1

W1 = 0.1

1

W2 = 0.3

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum = 0.1: predicted 1

Wrong

3/3/16

15

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

0

1

W1 = 0.1

1

W2 = 0.2

W3 = -0.3

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum = 0.1: predicted 1

decrease (0-1=-1) all non-zero xi by 0.1

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

0

W1 = 0.1

1

W2 = 0.2

W3 = -0.3

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum = 0.1: predicted 1

Are they all right?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

predicted y

1

1

W1 = 0.1

1

W2 = 0.2

W3 = -0.3

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

We’ve learned AND!

Perceptron learning

A few missing details, but not much more than this

Keeps adjusting weights as long as it makes mistakes

If the training data is linearly separable the perceptron
learning algorithm is guaranteed to converge to the
“correct” solution (where it gets all examples right)

3/3/16

16

Linearly Separable
x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

A data set is linearly separable if you can
separate one example type from the with a
line other

Which of these are linearly separable?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

Which of these are linearly separable?

XOR
Input x1

Input x2

?

?

?

?

T = ?

T = ?

T = ?
?

?

x1 x2 x1 xor x2

0 0 0
0 1 1
1 0 1
1 1 0

predicted = x1 xor x2

XOR
Input x1

Input x2

1

-1

-1

1

T = 1

T = 1

T = 1
1

1

x1 x2 x1 xor x2

0 0 0
0 1 1
1 0 1
1 1 0

predicted = x1 xor x2

3/3/16

17

Learning in multilayer networks
Similar idea as perceptrons

Examples are presented to the network

If the network computes an predicted that matches
the desired, nothing is done

If there is an error, then the weights are adjusted to
balance the error

Learning in multilayer networks
Key idea for perceptron learning: if the perceptron’s
predicted is different than the expected predicted, update
the weights

Challenge: for multilayer networks, we don’t know what the
expected predicted/error is for the internal nodes

perceptron multi-layer network

expected
predicted?

Backpropagation
Say we get it wrong, and we now want to update the weights

We can update this layer just as
if it were a perceptron

Backpropagation
Say we get it wrong, and we now want to update the weights

“back-propagate” the error (actual – predicted):

Assume all of these nodes were responsible for
some of the error

How can we figure out how much they were
responsible for?

3/3/16

18

Backpropagation
Say we get it wrong, and we now want to update the weights

error (actual – predicted)

w1
w2 w3

error for node i is: wi error

Backpropagation
Say we get it wrong, and we now want to update the weights

Update these weights and
continue the process back
through the network

Backpropagation
calculate the error at the predicted layer

backpropagate the error up the network

Update the weights based on these errors

Can be shown that this is the appropriate thing to do based
on our assumptions

That said, many neuroscientists don’t think the brain does
backpropagation of errors

Neural network regression
Given enough hidden nodes, you can learn any
function with a neural network

Challenges:

" overfitting – learning only the training data and not
learning to generalize

" picking a network structure

" can require a lot of tweaking of parameters,
preprocessing, etc.

3/3/16

19

Popular for digit recognition and many computer vision tasks
http://yann.lecun.com/exdb/mnist/

Cog sci people like NNs

Expression/emotion recognition
" Gary Cottrell et al

Language learning

Interpreting Satellite Imagery for
Automated Weather Forecasting

What NNs learned from youtube

http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-
evidence-of-machine-learning.html

3/3/16

20

What NNs learned from youtube

trained on 10M snapshots from youtube videos

NN with 1 billion connections

16,000 processors

Summary

Perceptrons, one layer networks, are insufficiently
expressive

Multi-layer networks are sufficiently expressive and
can be trained by error back-propogation

Many applications including speech, driving, hand
written character recognition, fraud detection,
driving, etc.

Our python NN module
Data:

x1 x2 x3 x1 and x2

0 0 0 1

0 1 0 0

1 0 0 1

1 1 0 0

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 0

table = \
[([0.0, 0.0, 0.0], [1.0]),
 ([0.0, 1.0, 0.0], [0.0]),
 ([1.0, 0.0, 0.0], [1.0]),
 ([1.0, 1.0, 0.0], [0.0]),
 ([0.0, 0.0, 1.0], [1.0]),
 ([0.0, 1.0, 1.0], [1.0]),
 ([1.0, 0.0, 1.0], [1.0]),
 ([1.0, 1.0, 1.0], [0.0])]

Data format

table = \
[([0.0, 0.0, 0.0], [1.0]),
 ([0.0, 1.0, 0.0], [0.0]),
 ([1.0, 0.0, 0.0], [1.0]),
 ([1.0, 1.0, 0.0], [0.0]),
 ([0.0, 0.0, 1.0], [1.0]),
 ([0.0, 1.0, 1.0], [1.0]),
 ([1.0, 0.0, 1.0], [1.0]),
 ([1.0, 1.0, 1.0], [0.0])]

list of examples

([0.0, 0.0, 0.0], [1.0])
input list predicted list

example = tuple

3/3/16

21

Training on the data

Construct a new network:
>>> nn = NeuralNet(3, 2, 1)

constructor: constructs a
new NN object

input nodes

hidden nodes

predicted nodes

Training on the data

Construct a new network:
>>> nn = NeuralNet(3, 2, 1)

3 input nodes 2 hidden nodes

1 predicted node

Training on the data
>>> nn.train(table)
error 0.195200
error 0.062292
error 0.031077
error 0.019437
error 0.013728
error 0.010437
error 0.008332
error 0.006885
error 0.005837
error 0.005047

by default trains 1000 iteration and prints out
error values every 100 iterations

After training, can look at the weights

>>> nn.train(table)
>>> nn.get_IH_weights()
[[-3.3435628797862624, -0.272324373735495],
 [-4.846203738642956, -4.601230952566068],
 [3.4233831101145973, 0.573534695637572],
 [2.9388429644152128, 1.8509761272713543]]

3/3/16

22

After training, can look at the weights

>>> nn.train(table)
>>> nn.get_IH_weights()
[[-3.3435628797862624, -0.272324373735495],
 [-4.846203738642956, -4.601230952566068],
 [3.4233831101145973, 0.573534695637572],
 [2.9388429644152128, 1.8509761272713543]]

After training, can look at the weights

>>> nn.get_HO_weights()
[[8.116192424400454],
 [5.358094903107918],
 [-4.373829543609533]]

Many parameters to play with Calling with optional parameters

>>> nn.train(table, iterations = 5, printInterval = 1)
error 0.005033
error 0.005026
error 0.005019
error 0.005012
error 0.005005

3/3/16

23

Train vs. test
train_data test_data

>>> nn.train(train_data)
>>> nn.test(test_data)

http://www.sciencebytes.org/2011/05/03/
blueprint-for-the-brain/

