

Unsupervised learning applications

learn clusters/groups without any label

customer segmentation (i.e. grouping)

image compression

bioinformatics: learn motifs

• • •

left, right, straight, left, left, left, straight left, straight, straight, left, right, straight, straight	GOOD
	BAD
eft, right, straight, left, left, left, straight	18.5
eft, straight, straight, left, right, straight, straight	-3

inputs

History of Neural Networks

McCulloch and Pitts (1943) – introduced model of artificial neurons and suggested they could learn

Hebb (1949) - Simple updating rule for learning

Rosenblatt (1962) - the perceptron model

Minsky and Papert (1969) - wrote Perceptrons

Bryson and Ho (1969, but largely ignored until 1980s--Rosenblatt) – invented back-propagation learning for multilayer networks

Training the perceptron

First wave in neural networks in the 1960's

Single neuron

Trainable: its threshold and input weights can be modified

If the neuron doesn't give the desired output, then it has made a mistake

Input weights and threshold can be changed according to a learning algorithm

Examples - Logical operators

AND - if all inputs are 1, return 1, otherwise return 0

 \mbox{OR} – if at least one input is 1, return 1, otherwise return 0

NOT - return the opposite of the input

XOR – if exactly one input is 1, then return 1, otherwise return 0

AND \mathbf{X}_1 **x**₂ x_1 and x_2 0 0 0 0 1 0 0 0 1 1 1 1

20

