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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

I Add the start state to
to visit.

I Repeat:
I Take a state off the

to visit list.
I If it’s the goal state:

I We’re done!

I If not:
I Add all successor states to

to visit.
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Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 2, 5?

BFS:
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4

BFS:
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(   )
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Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3

BFS:
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[   ][   ] [   ]

3

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8

BFS:
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7

BFS:
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6

BFS:

1

2 3 4

5 6 7 8

9 10

(   )

[   ]

2

[   ][   ] [   ]
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Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10

BFS:
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9

BFS:
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(   )
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[   ] [   ] [   ]

[   ] [    ]
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Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2

BFS:
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[   ] [    ]
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
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(   )

[   ]

[   ][   ] [   ]

[   ] [   ] [   ]

[   ] [    ]

5(   )

[     ]

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
1, 2
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
1, 2, 3
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
1, 2, 3, 4
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Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue
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Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
1, 2, 3, 4 5
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5 6 7 8

9 10

(   )

[   ]

5

[   ] [   ][   ]

6 7(   )

[     ] [   ] [   ] [   ]
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Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue
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Search Implementations

I Add the start state to
to visit.

I Repeat:
I Take a state off the

to visit list.
I If it’s the goal state:

I We’re done!

I If not:
I Add all successor states to

to visit.

def dfs(start_state):
s = Stack()
return search(start_state, s)

def bfs(start_state):
q = Queue()
return search(start_state, q)

def search(start_state, to_visit):
to_visit.add(start_state)

while not to_visit.is_empty():
current = to_visit.remove()

if current.is_goal():
return current

else:
for s in current.next_states():
to_visit.add(s)

return None
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Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

1

2 3 4

5 6 7 8

9 10

(   )

[   ]

1

Ordering?
1, 2, 5

What algorithm is this?
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Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None
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Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

def search(state):
if state.is_goal():
return [state]

else:
result = []

for s in state.next_states():
result += search(s)

return result

What is the difference?

Returns all solutions, not just one.
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Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

def search(state):
if state.is_goal():
return [state]

else:
result = []

for s in state.next_states():
result += search(s)

return result

What is the difference?

Returns all solutions, not just one.
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Square Puzzle

 x4  x4

CS30 Spring 2016



Square Puzzle

 x4  x4
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Square Puzzle
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Square Puzzle

I How can we represent a state?

I How do we know if we’re at a solution?

I How many next states does each state have?

I How can we get the next states?
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Square Puzzle

I How can we represent a state?

( (0, 1, 1, 1),
(1, 0, 0, 0),
(1, 1, 0, 1),
(1, 0, 0, 0) )
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Square Puzzle

I How can we represent a state?

( (0, 1, 1, 1),
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Square Puzzle

I How do we know if we’re at a solution?

def is_vert_solution(state):
for x in range(len(state)):
for y in range(len(state[0])):
first = state[x][0]
if state[x][y] != first:
return False

return True

def is_horiz_solution(state):
for y in range(len(state[0])):
for x in range(len(state)):
first = state[0][y]
if state[x][y] != first:
return False

return True
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Square Puzzle

I How do we know if we’re at a solution?

def is_vert_solution(state):
for x in range(len(state)):
for y in range(len(state[0])):
first = state[x][0]
if state[x][y] != first:
return False

return True

def is_horiz_solution(state):
for y in range(len(state[0])):
for x in range(len(state)):
first = state[0][y]
if state[x][y] != first:
return False

return True
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Square Puzzle

I How many next states does each state have?

I How can we get the next states?

def swizzle(state):
lstate = as__list(state)
save = lstate[1][1]
lstate[1][1] = lstate[1][2]
lstate[1][2] = lstate[2][2]
lstate[2][2] = lstate[2][1]
lstate[2][1] = save
return as__tuple(lstate)

...

def next_states(state):
return [ pull_column(state, x) for x in range(len(state)) ]

+ [ pull_row(state, y) for y in range(len(state[0])) ]
+ [ swizzle(state), swozzle(state) ]
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Square Puzzle

I How many next states does each state have?

I How can we get the next states?

def swizzle(state):
lstate = as__list(state)
save = lstate[1][1]
lstate[1][1] = lstate[1][2]
lstate[1][2] = lstate[2][2]
lstate[2][2] = lstate[2][1]
lstate[2][1] = save
return as__tuple(lstate)

...

def next_states(state):
return [ pull_column(state, x) for x in range(len(state)) ]

+ [ pull_row(state, y) for y in range(len(state[0])) ]
+ [ swizzle(state), swozzle(state) ]
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Demo
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Search With Memory

def search(state):
if state.is_goal():
return [state]

else:
result = []

for s in state.next_states():
result += search(s)

return result

def search(state, visited):
# remember this state
visited[state] = True

if state.is_goal():
return [state]

else:
result = []

for s in state.next_states():
# check if it’s already visited
if not(s in visited):
result += search(s, visited)

return result
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More Demo
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Breadth or Depth?
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Breadth or Depth?

I What is the best case?

I What is the worst case?

I Time? Memory?

I How do these depend on the search space?

I Quality of solutions?

CS30 Spring 2016



Breadth or Depth?

I What is the best case?

I What is the worst case?

I Time? Memory?

I How do these depend on the search space?

I Quality of solutions?

CS30 Spring 2016



Breadth or Depth?

I What is the best case?
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Breadth or Depth?

For a solution at depth d in a space with
branching factor B and max depth M:

BFS

I Best case:
I Consider ∼Bd nodes
I Remember ∼Bd nodes

I Worst case:
I Same as the best case

I Features:
I Consistent (but expensive)
I Finds shortest paths

DFS

I Best case:
I Consider d nodes
I Remember d nodes

I Worst case:
I Consider ∼BM nodes
I Remember ∼BM nodes

I Features:
I Inconsistent
I Can save memory if

there aren’t cycles

CS30 Spring 2016



Something More?
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