
Search Algorithms

[Peter Mawhorter]

University of California Santa Cruz

March 31st, 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

I Add the start state to
to visit.

I Repeat:
I Take a state off the

to visit list.
I If it’s the goal state:

I We’re done!

I If not:
I Add all successor states to

to visit.

1

2 3 4

5 6 7 8

9 10

()

[]

1

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

1

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 2, 5?

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

1

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

2 3 4

[][] []

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

2

[][] []

3

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

2

[][] []

6

[] [] []

7 8

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

2

[][] []

6

[] [] []

7

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

2

[][] []

[] [] []

6

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

2

[][] []

[] [] []

9 10

[] []

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

2

[][] []

[] [] []

[] []

9

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

[][] []

[] [] []

[] []

2

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:

1

2 3 4

5 6 7 8

9 10

()

[]

[][] []

[] [] []

[] []

5()

[]

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
1

1

2 3 4

5 6 7 8

9 10

()

[]

1

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
1, 2

1

2 3 4

5 6 7 8

9 10

()

[]

2

[] [][]

3 4

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
1, 2, 3

1

2 3 4

5 6 7 8

9 10

()

[]

3

[] [][]

4 5()

[]

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
1, 2, 3, 4

1

2 3 4

5 6 7 8

9 10

()

[]

4

[] [][]

5 6()

[] [] [] []

7 8

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they’re added to to visit left-to-right)

DFS:
1, 4, 3, 8, 7, 6, 10, 9, 2, 5

BFS:
1, 2, 3, 4 5

1

2 3 4

5 6 7 8

9 10

()

[]

5

[] [][]

6 7()

[] [] [] []

8

Depth-first search (DFS): to visit is a stack
Breadth-first search (BFS): to visit is a queue

CS30 Spring 2016

Search Implementations

I Add the start state to
to visit.

I Repeat:
I Take a state off the

to visit list.
I If it’s the goal state:

I We’re done!

I If not:
I Add all successor states to

to visit.

def dfs(start_state):
s = Stack()
return search(start_state, s)

def bfs(start_state):
q = Queue()
return search(start_state, q)

def search(start_state, to_visit):
to_visit.add(start_state)

while not to_visit.is_empty():
current = to_visit.remove()

if current.is_goal():
return current

else:
for s in current.next_states():
to_visit.add(s)

return None

CS30 Spring 2016

Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

1

2 3 4

5 6 7 8

9 10

()

[]

1

Ordering?
1, 2, 5

What algorithm is this?

CS30 Spring 2016

Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

1

2 3 4

5 6 7 8

9 10

()

[]

1

Ordering?

1, 2, 5

What algorithm is this?

CS30 Spring 2016

Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

1

2 3 4

5 6 7 8

9 10

()

[]

1

Ordering?
1, 2, 5

What algorithm is this?

CS30 Spring 2016

Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

1

2 3 4

5 6 7 8

9 10

()

[]

1

Ordering?
1, 2, 5

What algorithm is this?

CS30 Spring 2016

Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

def search(state):
if state.is_goal():
return [state]

else:
result = []

for s in state.next_states():
result += search(s)

return result

What is the difference?

Returns all solutions, not just one.

CS30 Spring 2016

Search Implementations

def search(state):
if state.is_goal():
return state

else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

def search(state):
if state.is_goal():
return [state]

else:
result = []

for s in state.next_states():
result += search(s)

return result

What is the difference?

Returns all solutions, not just one.

CS30 Spring 2016

Square Puzzle

 x4 x4

CS30 Spring 2016

Square Puzzle

 x4 x4

CS30 Spring 2016

Square Puzzle

CS30 Spring 2016

Square Puzzle

I How can we represent a state?

I How do we know if we’re at a solution?

I How many next states does each state have?

I How can we get the next states?

CS30 Spring 2016

Square Puzzle

I How can we represent a state?

((0, 1, 1, 1),
(1, 0, 0, 0),
(1, 1, 0, 1),
(1, 0, 0, 0))

CS30 Spring 2016

Square Puzzle

I How can we represent a state?

((0, 1, 1, 1),
(1, 0, 0, 0),
(1, 1, 0, 1),
(1, 0, 0, 0))

CS30 Spring 2016

Square Puzzle

I How do we know if we’re at a solution?

def is_vert_solution(state):
for x in range(len(state)):
for y in range(len(state[0])):
first = state[x][0]
if state[x][y] != first:
return False

return True

def is_horiz_solution(state):
for y in range(len(state[0])):
for x in range(len(state)):
first = state[0][y]
if state[x][y] != first:
return False

return True

CS30 Spring 2016

Square Puzzle

I How do we know if we’re at a solution?

def is_vert_solution(state):
for x in range(len(state)):
for y in range(len(state[0])):
first = state[x][0]
if state[x][y] != first:
return False

return True

def is_horiz_solution(state):
for y in range(len(state[0])):
for x in range(len(state)):
first = state[0][y]
if state[x][y] != first:
return False

return True

CS30 Spring 2016

Square Puzzle

I How many next states does each state have?

I How can we get the next states?

def swizzle(state):
lstate = as__list(state)
save = lstate[1][1]
lstate[1][1] = lstate[1][2]
lstate[1][2] = lstate[2][2]
lstate[2][2] = lstate[2][1]
lstate[2][1] = save
return as__tuple(lstate)

...

def next_states(state):
return [pull_column(state, x) for x in range(len(state))]

+ [pull_row(state, y) for y in range(len(state[0]))]
+ [swizzle(state), swozzle(state)]

CS30 Spring 2016

Square Puzzle

I How many next states does each state have?

I How can we get the next states?

def swizzle(state):
lstate = as__list(state)
save = lstate[1][1]
lstate[1][1] = lstate[1][2]
lstate[1][2] = lstate[2][2]
lstate[2][2] = lstate[2][1]
lstate[2][1] = save
return as__tuple(lstate)

...

def next_states(state):
return [pull_column(state, x) for x in range(len(state))]

+ [pull_row(state, y) for y in range(len(state[0]))]
+ [swizzle(state), swozzle(state)]

CS30 Spring 2016

Demo

CS30 Spring 2016

Search With Memory

def search(state):
if state.is_goal():
return [state]

else:
result = []

for s in state.next_states():
result += search(s)

return result

def search(state, visited):
remember this state
visited[state] = True

if state.is_goal():
return [state]

else:
result = []

for s in state.next_states():
check if it’s already visited
if not(s in visited):
result += search(s, visited)

return result

CS30 Spring 2016

More Demo

CS30 Spring 2016

Breadth or Depth?

CS30 Spring 2016

Breadth or Depth?

I What is the best case?

I What is the worst case?

I Time? Memory?

I How do these depend on the search space?

I Quality of solutions?

CS30 Spring 2016

Breadth or Depth?

I What is the best case?

I What is the worst case?

I Time? Memory?

I How do these depend on the search space?

I Quality of solutions?

CS30 Spring 2016

Breadth or Depth?

I What is the best case?

I What is the worst case?

I Time? Memory?

I How do these depend on the search space?

I Quality of solutions?

CS30 Spring 2016

Breadth or Depth?

For a solution at depth d in a space with
branching factor B and max depth M:

BFS

I Best case:
I Consider ∼Bd nodes
I Remember ∼Bd nodes

I Worst case:
I Same as the best case

I Features:
I Consistent (but expensive)
I Finds shortest paths

DFS

I Best case:
I Consider d nodes
I Remember d nodes

I Worst case:
I Consider ∼BM nodes
I Remember ∼BM nodes

I Features:
I Inconsistent
I Can save memory if

there aren’t cycles

CS30 Spring 2016

Something More?

CS30 Spring 2016

