Search Algorithms

[Peter Mawhorter |

University of California Santa Cruz

March 31st, 2016

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)
» Add the start state to o

to_visit.

> Repeat (S G D
» Take a state off the
IO &
» If it's the goal state:
> We're donel!

» |If not: o o

> Add all successor states to
to.visit. L L]

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

DFS:
1 & O D
OROIPITD.

dlEEEEE

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

BFS:

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

DFS:
o e (2D (a4
ORI

dlEEEEE

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

BFS:

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

DFS:
OIS
OROIPITD.

l2falal | | ||

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

BFS:

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
s (2D e D
OROIPITD.

& GO
s [T T]

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

BFS:

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
hae (2D Ca D
Cs Ce oD e
CECD

l2lef7is | | |

BFS:

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
A (2D Ca D
Cs Ca D Qe

lelelz| [|]|

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

BFS:

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
NG fE\
s Co D e

& GO
Ele ([T T]

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

BFS:

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
1,4,3,8,7,6,10 @ o °
s Ce D Qe
e (oD

L2folol | | | |

BFS:

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
1,4,3,8,7,6,10,9 @ o °
s Ce D Qe

& D
Ela [T T]

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

BFS:

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
1,4,3,8,7,6,10,9, 2 o o °
s Ce D Qe

JENENER

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

BFS:

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
1,4,3,8,7,6,10,9, 2,5 o o °
Cs Cod D Qe

Qe QoD
e | 111 1]

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

BFS:

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

(1)
DFS:
1,4,3,8,7,6,10,9, 2,5 o o °
ORCOIPID
BFS:

1 O G
dlEEEEE

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
1,4,3,8,7,6,10,9, 2,5 o @ @
s Co 0 (D D
BFS:

12 G G
2/sfel | |]]

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
1,4,3,8,7,6,10,9, 2,5 o o @
ORI
BFS:
e, G ¢

3lalel | |]]

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

@D
DFS:
1,4,3,8,7,6,10,9, 2,5 o o o
OROXDICY
BFS:
1254 &S ¢

ssfef7|s] | |

Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

Review: Ordering

In what order will BFS and DFS visit these states?
(assuming they're added to to_visit left-to-right)

(1
DFS:
1,4,3,876,10,9,25 (2D (e D
COROADICED
BFS:
1,23 45 Co) Ciod

) 6f7js] | | |
Depth-first search (DFS): to_visit is a stack
Breadth-first search (BFS): to_visit is a queue

Search Implementations

def dfs(start state):
s = Stack()
return search(start_state, s)

» Add the start state to def bfs(start_state):
. q = Queue()
tovisit. return search(start state, q)
> Repeat:
def search(start state, to visit):
g Ték? ?sFaU3othhe to_visit.add(start_state)
to_visit list.
» If it's the goal state: while not to visit.is empty():
» We're donel current = to_visit.remove()
> If not: if current.is goal():
> Add all successor states to return current
to_visit. else:

for s in current.next states():
to visit.add(s)

return None

Search Implementations

def search(state):
if state.is goal():
return state o o o

else:

for s in state.next states():
result = search(s) @ o o o

if result !'= None:

return result o o

return None

dlEEEEE

Search Implementations

def search(state):
if state.is goal():
return state o o o

else:

for s in state.next states():
result = search(s) @ o o o

if result !'= None:

return result o o

return None
LT

Ordering?

Search Implementations

def search(state):
if state.is goal():
return state o o o

else:

for s in state.next states():
result = search(s) @ o o o

if result !'= None:

return result o o

return None
LT

Ordering?
1,25

Search Implementations

def search(state):
if state.is goal():
return state o o o

else:

for s in state.next states():
result = search(s) @ o o o

if result !'= None:

return result o o

return None
LT

Ordering?
1,25

What algorithm is this?

Search Implementations

def search(state): def search(state):
if state.is goal(): if state.is goal():
return state return [state]
else: else:
for s in state.next states(): result = []
result = search(s)
if result != None: for s in state.next states():
return result result += search(s)
return None return result

What is the difference?

Search Implementations

def search(state): def search(state):
if state.is goal(): if state.is goal():
return state return [state]
else: else:
for s in state.next states(): result = []
result = search(s)
if result != None: for s in state.next states():
return result result += search(s)
return None return result

What is the difference?

Returns all solutions, not just one.

Square Puzzle

x4 x4

1 4 -

Square Puzzle

TFET I

Square Puzzle

» How can we represent a state?

How do we know if we're at a solution?

v

» How many next states does each state have?

» How can we get the next states?

Square Puzzle

» How can we represent a state?

—_~—~—~

[mEoR o Nol

IpNooNo)

(R Nol

[B B |

—_——— —

» How can we represent a state?

-
N
N
S

Q.
)
S
®
S
<3

)

Square Puzzle

» How do we know if we're at a solution?

Square Puzzle

» How do we know if we're at a solution?

def is_vert_solution(state):
for x in range(len(state)):
for y in range(len(state[0])):
first = state[x]1[0]
if state[x][y] !'= first:
return False
return True

def is_horiz_solution(state):
for y in range(len(state[0])):
for x in range(len(state)):
first = state[0][y]
if state[x][y] !'= first:
return False
return True

Square Puzzle

» How many next states does each state have?

» How can we get the next states?

Square Puzzle

» How many next states does each state have?

» How can we get the next states?

def swizzle(state):

lstate = as__list(state)
save = lstate[1l][1]
lstate[1][1] lstate[1][2]
lstate[1][2] lstate[2][2]
lstate[2][2] lstate[2][1]
lstate[2][1] save

return as__tuple(lstate)

def next_states(state):
return [pull_column(state, x) for x in range(len(state)) 1]
+ [pull_row(state, y) for y in range(len(state[0]))]
+ [swizzle(state), swozzle(state)]

Demo

search mode:
memory:
colors:

tempo:
visited:

to_ visit:
path length:

depth

on

2

medium

124 121
1215
<unknown>

122

: quit

r
R
X:

m
[

space:
enter:

reset search

: randomize puzzle

toggle search mode

: toggle memory
: toggle complexity

step once
pause/unpause

: change tempo

: auto-cursor

: reset cursor

1 move cursor

search demo

Search With Memo

def search(state, visited):
remember this state

def search(state): visited[state] = True

if state.is_goal(): if state.is goal():

return [state] -

. return [state]

else: .

result = [] else:

result = []
fo:ezu%: ifazgégiﬁfgitates(): for s in state.next states():
B # check if it's already visited
return result if not(s in visited):
result += search(s, visited)

return result

More Demo

map type:
mode:
condition:

tempo:
draw paths:

visited:

to_visit:

path length:

rooms
breadth
none

fast

<unknown>

space:
enter:

click:
right-click:

: reset map

: switch map type

: change scale

: toggle search mode
: special search mode
. cycle conditions

: reset search

step once
pause/unpause

= change tempo
: toggle path drawing
: cycle conditions

toggle wall at cursor
erase at cursor

- place start at cursor

: place goal at cursor

1-4:
ctrl-1-4:

place key 1-4
place lock 1-4

search demo

Breadth or Depth?

Breadth or Depth?

» What is the best case?

» What is the worst case?

» Time? Memory?

Breadth or Depth?

What is the best case?

v

What is the worst case?

v

v

Time? Memory?

v

How do these depend on the search space?

Breadth or Depth?

What is the best case?

v

What is the worst case?

v

v

Time? Memory?

v

How do these depend on the search space?

v

Quality of solutions?

Breadth or Depth?

For a solution at depth d in a space with
branching factor B and max depth M:

BFS DFS

» Best case: > Best case:

» Consider ~ B9 nodes » Consider d nodes

» Remember ~ B9 nodes » Remember d nodes
» Worst case: » Worst case:

» Same as the best case » Consider ~BM nodes
» Features: » Remember ~ BM nodes

» Consistent (but expensive) > Features:

» Finds shortest paths » Inconsistent

» Can save memory if
there aren't cycles

Something More?

