

Admin

Today's mentor hours moved to 6-8pm

Assignment 4 graded

Assignment 5

- how's it going?
- part A due tonight at 11:59pm
- part B due Friday at 6pm

Favorite thing about the course

Learning Python. It's pretty dope.

Things to be improved

Also I would really enjoy more mentor sessions, on Monday, for example. Or even on Friday.

It would be helpful to have a tutor/ mentor session on Sunday nights so that if we run into questions/ issues on homework over the weekend, there is somewhere to get help before Tuesday, aka halfway through the week.

Things to be improved

I was talking to a friend about how it'd be really nice to have a buddy to share how I code a function. I thought by watching another person code in a way that is different/similar to yours, you can understand the logic/style better and faster.

Things to be improved

We haven't done that many assignments, but one of them had some grading I didn't understand. I feel like that was an anomaly though.

Other thoughts

I would really like to do Turing Machines in this class I think they're fun & have interesting connections/ applications to computation/ the human mind

Comments in the future...

Grammars

Language view:

A grammar is a set of structural rules that govern the composition of sentences, phrases and words.

Computational view:

A grammar (often called a "formal grammar") is a set of rules that describe what strings are valid in a formal language.

CFG production rules

$S \rightarrow NP VP$

left hand side (single symbol) right hand side (one or more symbols)

CFG examp	le	CFG exam	ple
	Grammars "generate" or "derive" strings:		Grammars "generate" or "derive" strings:
$S \rightarrow A B C$ $A \rightarrow I$ $B \rightarrow really$ $B \rightarrow really, B$ $C \rightarrow like cs$	I really like cs We can apply a rule by substituting the symbol on the left hand side with the symbols on the right	$S \rightarrow A B C$ $A \rightarrow I$ $B \rightarrow really$ $B \rightarrow really, B$ $C \rightarrow like cs$	A really, B C We can apply a rule by substituting the symbol on the left hand side with the symbols on the right

What language does this represent?		
$S \rightarrow \alpha S$ $S \rightarrow E$ $E \rightarrow bE$ $E \rightarrow b$		

Writing CFGs

Write a CFG to represent the language containing all strings with exactly two bs.

 $\begin{array}{l} \mathsf{S} \to \mathsf{T}\mathsf{b}\mathsf{T}\mathsf{b}\mathsf{T}\\ \mathsf{T} \to \mathsf{T}\mathsf{a} \mid \varepsilon \end{array}$

CFG: Another example

Many possible CFGs for English, here is an example (fragment): $S \rightarrow NP \ VP$ $VP \rightarrow V \ NP$ $NP \rightarrow DetP \ N \ | \ DetP \ AdjP \ N$ $AdjP \rightarrow Adj \ | \ Adv \ AdjP$ $N \rightarrow boy \ | \ girl$ $V \rightarrow sees \ | \ likes$ $Adj \rightarrow big \ | \ small$ $Adv \rightarrow very$ $DetP \rightarrow \alpha \ | \ the$

Derivations in a CFG		
$\begin{array}{l} S \rightarrow NP \ VP \\ VP \rightarrow V \ NP \\ NP \rightarrow DetP \ N \ \mid DetP \ AdjP \ N \\ AdjP \rightarrow Adj \ \mid Adv \ AdjP \\ N \rightarrow boy \ \mid girl \\ V \rightarrow sees \ \mid likes \\ Adj \rightarrow big \ \mid small \\ Adv \rightarrow very \\ DetP \rightarrow a \ \mid the \end{array}$	S What can we do?	

Derivations in a CFG

 $S \rightarrow NP VP$ $\begin{array}{l} S \rightarrow VN^{P} VP \\ VP \rightarrow V NP \\ NP \rightarrow DetP N \mid DetP AdjP N \\ AdjP \rightarrow Adj \mid Adv AdjP \\ N \rightarrow boy \mid girl \\ V \rightarrow sees \mid likes \\ V = sees \mid U = U \end{array}$ $Adj \rightarrow big \mid small$ $Adv \rightarrow very$ $DetP \rightarrow a \mid the$

NP VP

What can we do?

Derivations in a CFG

 $S \rightarrow NP VP$ $VP \rightarrow VNP$ $VP \rightarrow VNP$ $NP \rightarrow DefP N | DefP AdjP N$ $AdjP \rightarrow Adj | Adv AdjP$ $N \rightarrow boy | girl$ $V \rightarrow sees | likes$ $Adj \rightarrow big \mid small$ $Adv \rightarrow very$ $DetP \rightarrow a \mid the$

NP VP

Derivations in a CFG

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$ $VP \rightarrow V NP$ $NP \rightarrow DetP N \mid DetP AdjP N$ $AdjP \rightarrow Adj | Adv AdjP$ $N \rightarrow boy | girl$ $N \rightarrow boy | gril$ $<math>V \rightarrow sees | likes$ $Adj \rightarrow big | small$ $Adv \rightarrow very$ $DetP \rightarrow a | the$

DetP N VP

Derivations in a CFG

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$ $VP \rightarrow V NP$ NP \rightarrow DetP N | DetP AdjP N $\begin{array}{l} \mathsf{NP} \rightarrow \mathsf{DetP} \; \mathsf{N} \; \mid \mathsf{DetP} \; \mathsf{Adif} \\ \mathsf{AdifP} \rightarrow \; \mathsf{Adi} \; \mid \; \mathsf{Adv} \; \mathsf{AdifP} \\ \mathsf{N} \rightarrow \; \mathsf{boy} \; \mid \; \mathsf{girl} \\ \mathsf{V} \rightarrow \; \mathsf{sees} \; \mid \; \mathsf{likes} \\ \mathsf{Adj} \rightarrow \; \mathsf{big} \; \mid \; \mathsf{small} \\ \mathsf{Adv} \rightarrow \; \mathsf{very} \\ \mathsf{DetP} \rightarrow \; \mathsf{a} \; \mid \; \mathsf{the} \end{array}$

DetP N VP

Derivations in a CFG

$\begin{array}{l} S \rightarrow NP \ VP \\ VP \rightarrow V \ NP \\ NP \rightarrow DetP \ N \ | \ DetP \ AdjP \ N \\ AdjP \rightarrow Adj \ | \ Adv \ AdjP \\ N \rightarrow \ boy \ | \ girl \\ V \rightarrow \ sees \ | \ likes \\ Adj \rightarrow \ big \ | \ small \\ Adv \rightarrow \ very \\ DetP \rightarrow \alpha \ | \ the \end{array}$

۰ the boy VP

Derivations in a CFG

 $\begin{array}{l} S \rightarrow NP \ VP \\ VP \rightarrow V \ NP \\ \textbf{NP} \rightarrow \textbf{DetP} \ \textbf{N} \ \textbf{DetP} \ AdjP \ \textbf{N} \\ AdjP \rightarrow Adj \ | \ Adv \ AdjP \\ \textbf{N} \rightarrow boy \ | \ girl \\ V \rightarrow sees \ | \ likes \\ Adj \rightarrow big \ | \ small \\ Adv \rightarrow very \\ \textbf{DetP} \rightarrow a \ | \ the \end{array}$

the boy likes NP

Derivations in a CFG

 $\begin{array}{ll} S \rightarrow NP \; VP \\ VP \rightarrow \; V \; NP \\ NP \rightarrow DetP \; N \; \mid \; DetP \; AdjP \; N \\ AdjP \rightarrow \; Adj \; \mid \; Adv \; AdjP \\ N \rightarrow \; boy \; \mid girl \\ V \rightarrow \; sees \; \mid \; likes \\ Adj \rightarrow \; big \; \mid \; small \\ Adv \rightarrow \; very \\ DetP \rightarrow \; a \; \mid \; the \end{array} \qquad \label{eq:selectropy}$

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Another CFG example		
	$VP \rightarrow V \mid V \text{ ADV}$ $NP \rightarrow ART \text{ PreNP}$ $PreNP \rightarrow N \mid ADJ \text{ PreNP}$ $ADV \rightarrow \text{ furiously } \text{ soothingly } \text{ intentionally}$ $ADJ \rightarrow \text{ colorless } \text{ green } \text{ smelly}$ $ART \rightarrow \text{ the } \mid a$		

One last example	
$S \rightarrow N$ $S \rightarrow (S)$ $S \rightarrow S + S S - S$ $S \rightarrow S * S S / S$ $N \rightarrow 0 1 2 9$ $N \rightarrow N N$	What language does this CFG represent?

One last example		
$S \rightarrow N$ $S \rightarrow (S)$ $S \rightarrow S + S S - S$ $S \rightarrow S * S S / S$ $N \rightarrow 0 1 2 \dots 9$ $N \rightarrow N N$	All arithmetic expressions!	

CFGs implemented	Midterm
	Average: 26.3 (82.5%)
	Median: 27.5 (86%)
	Quartiles: Quartiles:
	Q2: 27.5 (86%) Q3: 25 (78%)