

Admin

Today's mentor hours moved to 6-8pm

Assignment 4 graded

Assignment 5

- how's it going?
- part A due tonight at 11:59pm
- part B due Friday at 6pm

Course feedback
Course feedback

Overall, how is the class going?
Thanks!

Favorite thing about the course

Things to be improved

Sometimes a lot of the lecture material is covered too quickly. I would appreciate a slightly more comprehensive pace, and easier first examples.

Maybe focusing more time on reviewing the concepts that we have already learned just to make sure that the idea is really solidified it so that we can use it in a program.

Honestly, it's a little slow. But I don't really know how to improve that given that I know literally nothing about coding and need to be walked through things.

Things to be improved
Also I would really enioy more mentor sessions, on Monday, for example. Or even on Friday.
It would be helpful to have a tutor/ mentor session
on Sunday nights so that if we run into questions/
issues on homework over the weekend, there is
somewhere to get help before Tuesday, aka
halfway through the week.

Things to be improved

We haven't done that many assignments, but one of them had some grading I didn't understand. I feel like that was an anomaly though.

Things to be improved

I was talking to a friend about how it'd be really nice to have a buddy to share how I code a function. I thought by watching another person code in a way that is different/similar to yours, you can understand the logic/style better and faster.

Things to be improved

CFG example
$S \rightarrow$ A B C C
A \rightarrow I
B really
B \rightarrow rears "generate" or "derive" strings:
C like cs

CFG exa	
	Grammars "generate" or "derive" strings:
$S \rightarrow$ A B C	
$A \rightarrow 1$	S
$B \rightarrow$ really	
$B \rightarrow$ really, B	
$C \rightarrow$ like cs	We can apply a rule by substituting the symbol on the left hand side with the symbols on the right

CFG ex	
	Grammars "generate" or "derive" strings:
$S \rightarrow$ A B C	
$A \rightarrow 1$	A really C
$B \rightarrow$ really	
$\mathrm{B} \rightarrow$ really, B	
$\mathrm{C} \rightarrow$ like cs	We can apply a rule by substituting the symbol on the left hand side with the symbols on the right

CFG exa	
	Grammars "generate" or "derive" strings:
$S \rightarrow$ A B C	
$\mathrm{A} \rightarrow \mathrm{I}$	I really like cs
$\mathrm{C} \rightarrow$ like cs	We can apply a rule by substituting the symbol on the left hand side with the symbols on the right

CFG exc	
	Grammars "generate" or "derive" strings:
$S \rightarrow A B C$	
$A \rightarrow I$	I really like cs
$B \rightarrow$ really	
$\mathrm{B} \rightarrow$ really, B	
$\mathrm{C} \rightarrow$ like cs	We can apply a rule by substituting the symbol on the left hand side with the symbols on the right
	No more rules apply, so we're done!

CFG example

	Grammars "generate" or "derive" strings:
$\mathrm{A} \rightarrow \mathrm{I}$	A really, B C
B \rightarrow really, B	
$\mathrm{C} \rightarrow$ like cs	We can apply a rule by substituting the symbol on the left hand side with the symbols on the right

CFG example	
$\begin{aligned} & S \rightarrow A B C \\ & A \rightarrow 1 \\ & B \rightarrow \text { really } \\ & B \rightarrow \text { really, } B \\ & C \rightarrow \text { like } c s \end{aligned}$	Grammars describe a language, i.e. the strings (aka sentences) that are part of that language I really, really, ... like cs

What language does this represent?

$$
\begin{aligned}
& S \rightarrow a S \\
& S \rightarrow E \\
& E \rightarrow b E \\
& E \rightarrow b
\end{aligned} \text {. Two options }
$$

What language does this represent?	
$\begin{aligned} & S \rightarrow a S \\ & S \rightarrow E \\ & E \rightarrow b E \\ & E \rightarrow b \end{aligned}$	$\begin{gathered} \text { aS } \\ \downarrow \\ \text { aaS } \end{gathered}$

What language does this represent?	
aaabb...bE $S \rightarrow a S$ \downarrow $S \rightarrow E$ aaabb...bb $E \rightarrow b E$	
Eventually, apply second rule	

Often many ways to write the same language
$\mathrm{S} \rightarrow \mathrm{aS}$ \| E $\mathrm{E} \rightarrow \mathrm{bE} \mid \mathrm{b}$
$\mathrm{S} \rightarrow \mathrm{aS}$ \| E $\mathrm{E} \rightarrow \mathrm{Eb} \mid \mathrm{b}$
$\mathrm{S} \rightarrow \mathrm{aS}$ \| aaS

What languages do these represent?
$\mathrm{S} \rightarrow \mathrm{aEa} \mid \mathrm{bEb}$ $\mathrm{E} \rightarrow \mathrm{Ea}\|\mathrm{Eb}\| \mathrm{a} \mid \mathrm{b}$ $\mathrm{S} \rightarrow \mathrm{aSb}$ $\mathrm{S} \rightarrow \mathrm{ab}$ $\mathrm{S} \rightarrow \mathrm{aaS}\|\mathrm{abS}\| \mathrm{baS}\|\mathrm{bbS}\| \varepsilon$

What languages do these represent?
$\mathrm{S} \rightarrow \mathrm{aEa} \left\lvert\, \mathrm{bEb} \quad$all strings of a 's and b 's that start and end with the same letter\right.$\mathrm{E} \rightarrow \mathrm{Ea}\|\mathrm{Eb}\| \mathrm{a} \mid \mathrm{b}$
$S \rightarrow a S b$ strings of a's followed by an equal number of b 's $S \rightarrow a b$
$S \rightarrow$ aaS \| abS

Writing CFGs

Write a CFG to represent the language containing all strings that start with a.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aT} \\
& \mathrm{~T} \rightarrow \mathrm{Ta}|\mathrm{~Tb}| \varepsilon
\end{aligned}
$$

Writing CFGs
Write a CFG to represent the language containing all
strings with exactly two bs.
$\mathrm{S} \rightarrow \mathrm{TbTbT}$
$\mathrm{T} \rightarrow \mathrm{Ta} \mid \varepsilon$

CFG: Another example

Many possible CFGs for English, here is an example (fragment):
$S \rightarrow N P V P$
$V P \rightarrow V N P$
$N P \rightarrow \operatorname{DetP} N \mid \operatorname{DetP} \operatorname{AdjP} N$
AdjP \rightarrow Adi \| Adv AdjP
$\mathrm{N} \rightarrow$ boy \| girl
$\mathrm{V} \rightarrow$ sees \| likes
Adi \rightarrow big \mid small
Adv \rightarrow very
$\operatorname{DetP} \rightarrow a \mid$ the

Derivations in a CFG	
$\begin{aligned} & S \rightarrow N P \text { VP } \\ & \mathrm{VP} \rightarrow \mathrm{VNP} \\ & \mathrm{NP} \rightarrow \text { DetP } \mathrm{N} \mid \operatorname{DetP} \text { AdiP } N \\ & \text { AdiP } \rightarrow \text { Adi \| Adv AdiP } \\ & \mathrm{N} \rightarrow \text { boy } \mid \text { girl } \\ & \mathrm{V} \rightarrow \text { sees \| likes } \\ & \text { Adi } \rightarrow \text { big } \mid \text { small } \\ & \text { Adv } \rightarrow \text { very } \\ & \operatorname{DetP} \rightarrow \text { a } \mid \text { the } \end{aligned}$	NP VP What can we do?

Another CFG example
```\(s \rightarrow N P V P\) What can we generate? \(\mathrm{VP} \rightarrow \mathrm{V} \mid \mathrm{V}\) ADV \(\mathrm{NP} \rightarrow\) ART PreNP PreNP \(\rightarrow \mathrm{N} \mid\) ADJ PreNP ADV \(\rightarrow\) furiously \| soothingly


One last example	
$\begin{aligned} & S \rightarrow N \\ & S \rightarrow(S) \\ & S \rightarrow S+S \mid S-S \\ & S \rightarrow S * S \mid S / S \\ & N \rightarrow 0\|1\| 2\|\ldots\| 9 \\ & N \rightarrow N N \end{aligned}$	What language does this CFG represent?

One last example

$$
\begin{aligned}
& S \rightarrow N \\
& S \rightarrow(S) \\
& S \rightarrow S+S \mid S-S \quad \text { All arithmetic expressions! } \\
& S \rightarrow S * S \mid S / S \\
& N \rightarrow 0|1| 2|\ldots| 9 \\
& N \rightarrow N N
\end{aligned}
$$

Parsing	
Given a CFG and a sentence, determine the possible parse tree(s)	
PP $\rightarrow>\operatorname{IN} N$	
$\mathrm{V}->$ eat$\mathrm{N} \rightarrow>$ sushi	
$\mathrm{N}->$ tuna $\mathrm{N}->$ with	What if the grammar is much larger?

Parsing


