
3/3/15	

1	

CFGs
David Kauchak
CS30 – Spring 2015

Grammars

What is a grammar?

Grammars

Language view:
A grammar is a set of structural rules that govern
the composition of sentences, phrases and words.

Computational view:
A grammar (often called a “formal grammar”) is a
set of rules that describe what strings are valid in a
formal language.

Grammars

What types of (formal) grammars have you heard
of before?

Lots of different kinds of grammars:

¤  regular
¤ context-free
¤ context-sensitive
¤  recursively enumerable
¤  transformation grammars

3/3/15	

2	

Context Free Grammars (CFG)

How many people have heard of them?

What do you know about them?

Where are they used?

CFG production rules

S → NP VP S → NP VP

left hand side
(single symbol)

right hand side
(one or more symbols)

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

S

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

S

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

3/3/15	

3	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

3/3/15	

4	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

I really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

I really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

No more rules apply, so we’re done!

3/3/15	

5	

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

I really like cs

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

Is this the only string that can be derived?

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really, B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

Grammars “generate” or “derive” strings:

A really, really, B C

We can apply a rule by substituting the symbol
on the left hand side with the symbols on the right

CFG example

S → A B C
A → I
B → really
B → really, B
C → like cs

I really, really, … like cs

Grammars describe a language, i.e. the
strings (aka sentences) that are part of
that language

3/3/15	

6	

CFGs formally

G = (NT, T, P, S)

NT: finite set of nonterminal symbols

T: finite set of terminal symbols, NT and T are disjoint

P: finite set of productions of the form

A → α, A ∈ NT and α ∈ (T ∪ NT)*

S ∈ NT: start symbol

