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Search Trees:  
BSTs and B-Trees 

David Kauchak 
cs302 

Spring 2013 

Administrative 

Proof by contradiction Number guessing game 
I’m thinking of a number between 1 and n 
 
You are trying to guess the answer 
 
For each guess, I’ll tell you “correct”, “higher” or “lower” 

Describe an algorithm that minimizes the number of 
guesses 
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Binary Search Trees 
BST – A binary tree where a parent’s value is greater than 
all values in the left subtree and less than or equal to all the 
values in the right subtree 

the left and right children are also binary trees 
 
Why not? 

Can be implemented with with pointers or an array 

leftTree(i)< i ≤ rightTree(i)

leftTree(i) ≤ i ≤ rightTree(i)

Example 
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What else can we say? 
)()( irightiileft ≤<

All elements to the left of a 
node are less than the node 
 
All elements to the right of a 
node are greater than or 
equal to the node 
 
The smallest element is the 
left-most element 
 
The largest element is the 
right-most element 
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Another example: the loner 

12 
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Another example: the twig 
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Operations 
Search(T,k) – Does value k exist in tree T 
Insert(T,k) – Insert value k into tree T 
Delete(T,x) – Delete node x from tree T  
Minimum(T) – What is the smallest value in the tree? 
Maximum(T) – What is the largest value in the tree? 
Successor(T,x) – What is the next element in sorted order 
after x 
Predecessor(T,x) – What is the previous element in sorted 
order of x 
Median(T) – return the median of the values in tree 
T 

Search 

How do we find an element? 

Finding an element 
Search(T, 9) 
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)()( irightiileft ≤<
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Finding an element 
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)()( irightiileft ≤<
Search(T, 9) 

Finding an element 

12 

8 

 5 9 20 

14 

)()( irightiileft ≤<
Search(T, 9) 

9 > 12? 

Finding an element 
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)()( irightiileft ≤<
Search(T, 9) 

Finding an element 
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)()( irightiileft ≤<
Search(T, 9) 
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Finding an element 
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)()( irightiileft ≤<
Search(T, 13) 

Finding an element 
Search(T, 13) 
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)()( irightiileft ≤<

Finding an element 
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)()( irightiileft ≤<
Search(T, 13) 

Finding an element 
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)()( irightiileft ≤<

? 

Search(T, 13) 
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Iterative search Is BSTSearch correct? 

)()( irightiileft ≤<

Running time of BST 

Worst case? 
l  O(height of the tree) 

 
Average case? 

l  O(height of the tree) 
 
Best case? 

l  O(1) 

Height of the tree 
Worst case height? 

l  n-1 
l  “the twig” 

Best case height? 
l  floor(log2n) 
l  complete (or near complete) binary tree 

Average case height? 
l  Depends on two things: 

l  the data 
l  how we build the tree! 
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Insertion Insertion 

Similar to search 

Insertion 

Similar to search 

Find the correct 
location in the tree 

Insertion 

keeps track of the 
previous node we 
visited so when we fall 
off the tree, we know  
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Insertion 

add node onto the 
bottom of the tree 

Correctness? 

maintain BST 
property 

Correctness 

What happens 
if it is a 
duplicate? 

Inserting duplicate 
Insert(T, 14) 
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)()( irightiileft ≤<
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Running time 

O(height of the tree) 

Running time 

Why not  
Θ(height of the tree)? 

O(height of the tree) 

Running time 
12 
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Insert(T, 15) 

Height of the tree 
Worst case: “the twig” – When will this happen? 
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Height of the tree 
Best case: “complete” – When will this happen? 

Height of the tree 

Average case for random data? 

Randomly inserted data into 
a BST generates a tree on 
average that is O(log n) 

Visiting all nodes 
In sorted order 
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Visiting all nodes 
In sorted order 
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Visiting all nodes 
In sorted order 
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5, 8 

Visiting all nodes 
In sorted order 
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5, 8, 9 

Visiting all nodes 
In sorted order 

12 

8 

 5 9 20 

14 

5, 8, 9, 12 

Visiting all nodes 
What’s happening? 
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5, 8, 9, 12 
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Visiting all nodes 
In sorted order 
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5, 8, 9, 12, 14 

Visiting all nodes 
In sorted order 
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5, 8, 9, 12, 14, 20 

Visiting all nodes in order Visiting all nodes in order 

any operation 
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Is it correct? 

Does it print out all of the nodes in sorted order? 

)()( irightiileft ≤<

Running time? 

Recurrence relation: 
l  j nodes in the left subtree 
l  n – j – 1 in the right subtree 

Or 
l  How much work is done for each call? 
l  How many calls? 
l  Θ(n) 

)1()1()()( Θ+−−+= jnTjTnT

What about? 
Preorder traversal 
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12, 8, 5, 9, 14, 20 

How is this useful? 
Tree copying: insert in to 
new tree in preorder 
 
prefix notation: (2+3)*4 -> 
* + 2 3 4 
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What about? 
Postorder traversal 
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5, 9, 8, 20, 14, 12 

How is this useful? 
postfix notation: 
(2+3)*4 -> 4 3 2 + * 
 
? 

Min/Max 
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Running time of min/max? 

O(height of the tree) 
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Successor and predecessor 
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Predecessor(12)? 9 

Successor and predecessor 
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Predecessor in general? largest node of all those 
smaller than this node 

rightmost element of 
the left subtree 

Successor 
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Successor(12)? 13 

Successor 
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Successor in general? smallest node of all those 
larger than this node 

leftmost element of the 
right subtree 
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Successor 
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What if the node 
doesn’t have a right 
subtree? 

smallest node of all those 
larger than this node 

leftmost element of the 
right subtree 

9  5 

Successor 
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What if the node 
doesn’t have a right 
subtree? 

node is the largest 
 
the successor is the 
node that has x as a 
predecessor 
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Successor 
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successor is the 
node that has x as a 
predecessor 
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Successor 
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successor is the 
node that has x as a 
predecessor 

9 
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Successor 
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successor is the 
node that has x as a 
predecessor 

9 

Successor 
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successor is the 
node that has x as a 
predecessor 

9 

keep going up until 
we’re no longer a 
right child 

Successor Successor 

if we have a right 
subtree, return the 
smallest of the right 
subtree 
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Successor 

find the node that x is 
the predecessor of 

keep going up until 
we’re no longer a 
right child 

Successor running time 

O(height of the tree) 

Deletion 
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Three cases! 

Deletion: case 1 
No children 
 
Just delete the node 
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Deletion: case 1 
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No children 
 
Just delete the node 

Deletion: case 2 
One child 
 
Splice out the node 
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Deletion: case 2 
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One child 
 
Splice out the node 

Deletion: case 3 
Two children 
 
Replace x with it’s successor 
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Deletion: case 3 
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Two children 
 
Replace x with it’s successor 

Deletion: case 3 
Two children 
 
Will we always have a successor? 
 
Why successor? 

l  Case 1 or case 2 deletion 
l  Larger than the left subtree 
l  Less than or equal to right subtree 

Height of the tree 
Most of the operations take time  
O(height of the tree) 
 
We said trees built from random data have height 
O(log n), which is asymptotically tight 
 
Two problems: 

l  We can’t always insure random data 
l  What happens when we delete nodes and insert 

others after building a tree? 

Balanced trees 

Make sure that the trees remain balanced! 
l  Red-black trees 
l  AVL trees 
l  2-3-4 trees 
l  … 

 
B-trees 


