

Number guessing game	
I'm thinking of a number between 1 and n	
You are trying to guess the answer	
For each guess, l'll tell you "correct", "higher" or "lower"	
Describe an algorithm that minimizes the number of	
guesses	

Binary Search Trees

: : : $\because:$

BST - A binary tree where a parent's value is greater than all values in the left subtree and less than or equal to all the values in the right subtree
leftTree $(i)<i \leq$ rightTree (i)
the left and right children are also binary trees

Why not?

$$
\text { leftTree }(i) \leq i \leq \text { rightTree }(i)
$$

Can be implemented with with pointers or an array

Another example: the loner

\square

Operations	:\%:\%
Search (T, k) - Does value k exist in tree T Insert($T, \mathrm{k})$ - Insert value k into tree T	
Delete(T, x) - Delete node x from tree T	
Minimum (T) - What is the smallest value in the tree?	
Maximum (T) - What is the largest value in the tree?	
Successor (T, x) - What is the next element in sorted order after x	
Predecessor $(T, x)-$ What is the previous element in sorted order of x	
$\operatorname{Median}(T)$ - return the median of the values in tree T	

Search	:\%:。
How do we find an element?	
```\(\operatorname{BSTSEARCH}(x, k)\) if \(x=\) null or \(k=x\) return x elseif \(k<x\) return \(\operatorname{BSTSEARCh}(\operatorname{Left}(\mathrm{x}), \mathrm{k})\) else return \(\operatorname{BSTSEARCh}(\operatorname{Right}(x), \mathrm{k})\)```	





Iterative search	
```IterativeBSTSearch \((x, k)\) while \(x \neq\) null and \(k \neq x\) if \(k<x\) \(x \leftarrow \operatorname{LeFt}(x)\) else \(x \leftarrow \operatorname{Right}(x)\) return \(x\)```	
```BSTSEARCH}(x,k if x= null or }k= return x elseif }k< return BSTSEARCh(Left(x), k) else return BSTSEARCh(Right(x), k)```	

## Is BSTSearch correct?

$\operatorname{BSTSeArch}(x, k)$
1 if $x=$ null or $k=x$
2 return x
3 elseif $k<x$
return $\operatorname{BSTSEARCH}(\operatorname{LEFT}(\mathrm{x}), \mathrm{k})$
else
return BSTSEARCH(Right(x), k)
$\operatorname{left}(i)<i \leq \operatorname{right}(i)$

Running time of BST	:\%:\%
Worst case?   - O(height of the tree)	
Average case?   - O(height of the tree)	
Best case?   - O(1)	


Height of the tree	
Worst case height?   - n -1   - "the twig"	
Best case height?   - floor( $\log _{2} n$ )   - complete (or near complete) binary tree	
Average case height?   - Depends on two things:   - the data   - how we build the tree!	






Visiting all nodes
In sorted order
5, 8, 9




## Visiting all nodes

In sorted order

$5,8,9,12,14,20$


Visiting all nodes in order	
```InorderTreeWalk \((x)\) if \(x \neq\) null InorderTreeWalk(Left \((x)\) ) print \(x\) InorderTreewalk( \(\operatorname{Right}(x)\) )```	

Is it correct?

InorderTreewalk (x)
if $x \neq$ null
InorderTreewalk(Left (x))
print x
InorderTreewalk(Right (x))

::: $:$
 :!:8.
 : :\% $\%^{\circ}$
 -

2	InorderTreeWalk $(\operatorname{Left}(x))$
3	print x
4	InorderTreeWalk $(\operatorname{Right}(x))$

Does it print out all of the nodes in sorted order?

$$
\operatorname{left}(i)<i \leq \operatorname{right}(i)
$$

	: $\because: 8$
Recurrence relation: - j nodes in the left subtree - $n-j-1$ in the right subtree $T(n)=T(j)+T(n-j-1)+\Theta(1)$	
Or - How much work is done for each call? - How many calls? - $\Theta(\mathrm{n})$	

What about?	
```Treewalk(x) if \(x \neq\) null \(\begin{gathered}\text { print } x\end{gathered}\) \(\left.\operatorname{TreeW} \mathrm{Walk}_{(\operatorname{Left}}(x)\right)\) TreeWalk(Right( \(x\) ))```	



$5,9,8,20,14,12$
How is this useful?
postfix notation:
-
$(2+3)^{*} 4$-> 432 + *








## Height of the tree

Most of the operations take time O (height of the tree)

We said trees built from random data have height $\mathrm{O}(\log n)$, which is asymptotically tight

Two problems:

- We can't always insure random data
- What happens when we delete nodes and insert others after building a tree?


