
3/12/13

1

Search Trees:
BSTs and B-Trees

David Kauchak
cs302

Spring 2013

Administrative

Proof by contradiction Number guessing game
I’m thinking of a number between 1 and n

You are trying to guess the answer

For each guess, I’ll tell you “correct”, “higher” or “lower”

Describe an algorithm that minimizes the number of
guesses

3/12/13

2

Binary Search Trees
BST – A binary tree where a parent’s value is greater than
all values in the left subtree and less than or equal to all the
values in the right subtree

the left and right children are also binary trees

Why not?

Can be implemented with with pointers or an array

leftTree(i)< i ≤ rightTree(i)

leftTree(i) ≤ i ≤ rightTree(i)

Example

12

8

 5 9 20

14

What else can we say?
)()(irightiileft ≤<

All elements to the left of a
node are less than the node

All elements to the right of a
node are greater than or
equal to the node

The smallest element is the
left-most element

The largest element is the
right-most element

12

8

 5 9 20

14

Another example: the loner

12

3/12/13

3

Another example: the twig
12

8

 5

 1

Operations
Search(T,k) – Does value k exist in tree T
Insert(T,k) – Insert value k into tree T
Delete(T,x) – Delete node x from tree T
Minimum(T) – What is the smallest value in the tree?
Maximum(T) – What is the largest value in the tree?
Successor(T,x) – What is the next element in sorted order
after x
Predecessor(T,x) – What is the previous element in sorted
order of x
Median(T) – return the median of the values in tree
T

Search

How do we find an element?

Finding an element
Search(T, 9)

12

8

 5 9 20

14

)()(irightiileft ≤<

3/12/13

4

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 9)

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 9)

9 > 12?

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 9)

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 9)

3/12/13

5

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 13)

Finding an element
Search(T, 13)

12

8

 5 9 20

14

)()(irightiileft ≤<

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 13)

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<

?

Search(T, 13)

3/12/13

6

Iterative search Is BSTSearch correct?

)()(irightiileft ≤<

Running time of BST

Worst case?
l  O(height of the tree)

Average case?

l  O(height of the tree)

Best case?

l  O(1)

Height of the tree
Worst case height?

l  n-1
l  “the twig”

Best case height?
l  floor(log2n)
l  complete (or near complete) binary tree

Average case height?
l  Depends on two things:

l  the data
l  how we build the tree!

3/12/13

7

Insertion Insertion

Similar to search

Insertion

Similar to search

Find the correct
location in the tree

Insertion

keeps track of the
previous node we
visited so when we fall
off the tree, we know

3/12/13

8

Insertion

add node onto the
bottom of the tree

Correctness?

maintain BST
property

Correctness

What happens
if it is a
duplicate?

Inserting duplicate
Insert(T, 14)

12

8

 5 9 20

14

)()(irightiileft ≤<

3/12/13

9

Running time

O(height of the tree)

Running time

Why not
Θ(height of the tree)?

O(height of the tree)

Running time
12

8

 5

 1

Insert(T, 15)

Height of the tree
Worst case: “the twig” – When will this happen?

3/12/13

10

Height of the tree
Best case: “complete” – When will this happen?

Height of the tree

Average case for random data?

Randomly inserted data into
a BST generates a tree on
average that is O(log n)

Visiting all nodes
In sorted order

12

8

 5 9 20

14

Visiting all nodes
In sorted order

12

8

 5 9 20

14

5

3/12/13

11

Visiting all nodes
In sorted order

12

8

 5 9 20

14

5, 8

Visiting all nodes
In sorted order

12

8

 5 9 20

14

5, 8, 9

Visiting all nodes
In sorted order

12

8

 5 9 20

14

5, 8, 9, 12

Visiting all nodes
What’s happening?

12

8

 5 9 20

14

5, 8, 9, 12

3/12/13

12

Visiting all nodes
In sorted order

12

8

 5 9 20

14

5, 8, 9, 12, 14

Visiting all nodes
In sorted order

12

8

 5 9 20

14

5, 8, 9, 12, 14, 20

Visiting all nodes in order Visiting all nodes in order

any operation

3/12/13

13

Is it correct?

Does it print out all of the nodes in sorted order?

)()(irightiileft ≤<

Running time?

Recurrence relation:
l  j nodes in the left subtree
l  n – j – 1 in the right subtree

Or
l  How much work is done for each call?
l  How many calls?
l  Θ(n)

)1()1()()(Θ+−−+= jnTjTnT

What about?
Preorder traversal

12

8

 5 9 20

14

12, 8, 5, 9, 14, 20

How is this useful?
Tree copying: insert in to
new tree in preorder

prefix notation: (2+3)*4 ->
* + 2 3 4

3/12/13

14

What about?
Postorder traversal

12

8

 5 9 20

14

5, 9, 8, 20, 14, 12

How is this useful?
postfix notation:
(2+3)*4 -> 4 3 2 + *

?

Min/Max

12

8

 5 9 20

14

Running time of min/max?

O(height of the tree)

3/12/13

15

Successor and predecessor

12

8

 5 9 20

14

13

Predecessor(12)? 9

Successor and predecessor

12

8

 5 9 20

14

13

Predecessor in general? largest node of all those
smaller than this node

rightmost element of
the left subtree

Successor

12

8

 5 9 20

14

13

Successor(12)? 13

Successor

12

8

 5 9 20

14

13

Successor in general? smallest node of all those
larger than this node

leftmost element of the
right subtree

3/12/13

16

Successor

12

8

20

14

13

What if the node
doesn’t have a right
subtree?

smallest node of all those
larger than this node

leftmost element of the
right subtree

9 5

Successor

12

8

 5 20

14

13

What if the node
doesn’t have a right
subtree?

node is the largest

the successor is the
node that has x as a
predecessor

9

Successor

12

8

 5 20

14

13

successor is the
node that has x as a
predecessor

9

Successor

12

8

 5 20

14

13

successor is the
node that has x as a
predecessor

9

3/12/13

17

Successor

12

8

 5 20

14

13

successor is the
node that has x as a
predecessor

9

Successor

12

8

 5 20

14

13

successor is the
node that has x as a
predecessor

9

keep going up until
we’re no longer a
right child

Successor Successor

if we have a right
subtree, return the
smallest of the right
subtree

3/12/13

18

Successor

find the node that x is
the predecessor of

keep going up until
we’re no longer a
right child

Successor running time

O(height of the tree)

Deletion

12

8

 5 9 20

14

13

Three cases!

Deletion: case 1
No children

Just delete the node

12

8

 5 9 20

14

13

17

3/12/13

19

Deletion: case 1

12

8

 5 20

14

13

17

No children

Just delete the node

Deletion: case 2
One child

Splice out the node

12

8

 5 20

14

13

17

Deletion: case 2

12

5

20

14

13

17

One child

Splice out the node

Deletion: case 3
Two children

Replace x with it’s successor

12

5

20

14

13

17

3/12/13

20

Deletion: case 3

12

5

20

17

13

Two children

Replace x with it’s successor

Deletion: case 3
Two children

Will we always have a successor?

Why successor?

l  Case 1 or case 2 deletion
l  Larger than the left subtree
l  Less than or equal to right subtree

Height of the tree
Most of the operations take time
O(height of the tree)

We said trees built from random data have height
O(log n), which is asymptotically tight

Two problems:

l  We can’t always insure random data
l  What happens when we delete nodes and insert

others after building a tree?

Balanced trees

Make sure that the trees remain balanced!
l  Red-black trees
l  AVL trees
l  2-3-4 trees
l  …

B-trees

