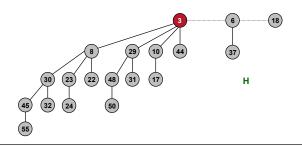


Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

- Find root x with min key in root list of H, and delete
- H' ← broken binomial trees
- H ← Union(H', H)

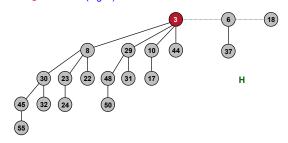


Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

- Find root x with min key in root list of H, and delete
- H' ← broken binomial trees
- H ← Union(H', H)

Running time? O(log N)



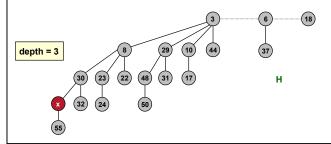
Binomial Heap: Decrease Key

Just call Decrease-Key/Increase-Key of Heap

- Suppose x is in binomial tree B_k
- Bubble node x up the tree if x is too small

Running time: O(log N)

Proportional to depth of node x



Binomial Heap: Delete

Delete node x in binomial heap H

- Decrease key of x to -∞
- Delete min

Running time: O(log N)

Build-Heap Call insert n times Runtime? O(n log n) Can we get a tighter bound?

Build-Heap				
Call insert n times				
Consider inserting <i>n</i> numbers	times	cost		
■ how many times will B ₀ be empty?		O(1)		
how many times will we need to merge with B ₀ ?	n/2	O(1)		
how many times will we need to merge with B ₁ ?	n/4	O(1)		
how many times will we need to merge with B ₂ ?		O(1)		
 how many times will we need to merge with B_{log r} 	O(1)			
Runtime? O(n)				

Heaps

	Binary heap	Binomial heap				
Procedure	(worst-case)	(worst-case)				
Build-Heap	$\Theta(n)$	$\Theta(n)$				
Insert	$\Theta(\log n)$	$O(\log n)$				
MAXIMUM	$\Theta(1)$	$O(\log n)$				
Extrac-Max	$\Theta(\log n)$	$\Theta(\log n)$				
Union	$\Theta(n)$	$\Theta(\log n)$				
Increase-Element	$\Theta(\log n)$	$\Theta(\log n)$				
DELETE	$\Theta(\log n)$	$\Theta(\log n)$				
(adapted from Figure 19.1, pg. 456 $[1]$)						

Fibonacci Heaps Similar to binomial heap . A Fibonacci heap consists of a sequence of heaps More flexible · Heaps do not have to be binomial trees More complicated @ Min [H]

Heaps

Procedure	Binary heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)			
BUILD-HEAP	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
Insert	$\Theta(\log n)$	$O(\log n)$	$\Theta(1)$			
Maximum	$\Theta(1)$	$O(\log n)$	$\Theta(1)$			
EXTRAC-MAX	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$			
Union	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$			
INCREASE-ELEMENT	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$			
Delete	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$			
(adapted from Figure 19.1, pg. 456 [1])						

Should you always use a Fibonacci heap?

Heaps

Procedure	Binary heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
BUILD-HEAP	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Insert	$\Theta(\log n)$	$O(\log n)$	$\Theta(1)$
Maximum	$\Theta(1)$	$O(\log n)$	$\Theta(1)$
EXTRAC-MAX	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
Union	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$
Increase-Element	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
DELETE	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$

- (adapted from Figure 19.1, pg. 456 [1])

 - Extract-Max and Delete are O(n) worst case
 Constants can be large on some of the operations
 - Complicated to implement

Heaps Binary heap Binomial heap Fibonacci heap Procedure (worst-case) (worst-case) (amortized) $\Theta(n)$ Build-Heap $\Theta(n)$ $\Theta(n)$ Insert $\Theta(\log n)$ $O(\log n)$ $O(\log n)$ $\Theta(1)$ $\Theta(1)$ MAXIMUM $\Theta(1)$ Extrac-Max $\Theta(\log n)$ $\Theta(n)$ $\Theta(\log n)$ $\Theta(\log n)$ $O(\log n)$ $\Theta(1)$ Union $\Theta(\log n)$ $\Theta(\log n)$ $\Theta(1)$ INCREASE-ELEMENT DELETE $\Theta(\log n)$ $\Theta(\log n)$ $O(\log n)$ (adapted from Figure 19.1, pg. 456 [1]) Can we do better?