

Administrative

- Homework 2 grading
- Homework 3?
- Homework 4 out today

How many leaves?	
How many leaves are there in a complete a-ary tree of depth d ? $\begin{aligned} a^{d} & =a^{\log _{b} n} \\ & =n^{\log _{b} a} \end{aligned}$	

		:\%:\%
Total cos	$\begin{aligned} & \text { if } f(n)=\Theta\left(n^{\log _{2} a}\right) \text {, then } T(n)=\Theta\left(n^{\log _{8} a} \log n\right) \\ & \text { if } f(n)=\Omega\left(n^{\log _{a s e} \varepsilon}\right) \text { for } \varepsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for } c<1 \\ & \text { then } T(n)=\Theta(f(n)) \end{aligned}$	$\because \%$
$T(n)=$	$\left.\begin{array}{l} { }^{(}(n)+a f(n / b)+a^{2} f\left(n / b^{2}\right)+\ldots+a^{d-1} f\left(n / b^{d-1}\right)+\Theta\left(n^{\log }\right. \\ \sum_{=1}^{n-1} a^{\prime} f\left(n / b^{\prime}\right)+\Theta\left(n^{\log a} a\right. \end{array}\right)$	$z_{2, a 3}{ }^{(2)}$
Case 3: cost is dominated by the cost of the root		

Partirion (A, p, r)	
1	$i \leftarrow p-1$
2	for $j \leftarrow p$ to $r-1$
3	if $A[j] \leq A[r]$
4	$i \leftarrow i+1$
5	swap $A[i]$ and $A[j]$
6	swap $A[i+1]$ and $A[r]$
7	return $i+1$
What does it do?	

Proof by induction

Proof by induction

Loop Invariant: $A[p \ldots i] \leq A[r]$ and $A[i+1 \ldots j-1]>A[r]$
Base case: $A[p \ldots i]$ and $A[i+1 \ldots j-1]$ are empty
Loop Invariant: $A[p \ldots i] \leq A[r]$ and $A[i+1 \ldots j-1]>A[r]$
2nd case:
Assume it holds for $j-1$, two cases:

- $A[j>A[r]$
- $A[p . . . i]$ remains unchanged
- $\mathrm{A}[i+1 \ldots j]$ contains one additional element, $\mathrm{A}[\mathrm{j}]$ which is $>\mathrm{A}[r]$
$i \leftarrow p-1$
for $j \leftarrow p$ to $r-1$
if $A[j] \leq A[r]$
swap $A[i]$ and $A[j]$
swap $A[i+1]$ and $A[r]$
return $i+1$
- $A[j] \leq A[r]$
- i is incremented
- A[i] swapped with $A[j]$ - $A[p . . . i]$ constains one additional element which is $\leq A[r]$
- $A[i+1 \ldots . . j-1]$ will contain the same elements, except the last element will be the old first element

Partition (A, p, r)
$1 \quad i \leftarrow p-1$
2 for $j \leftarrow p$ to $r-1$
$3 \quad$ if $A[j] \leq A[r]$
$5 \quad \begin{array}{ll}i \leftarrow i+1 \\ \text { swap } A[i]\end{array}$ and $A[j]$
6 swap $A[i+1]$ and $A[r$ return $i+1$

Some observations Divide and conquer: different than MergeSort - do the work before recursing How many times is/can an element selected for as a pivot? What happens after an element is selected as a pivot? 1 3 2 4 8 7 5 $: \% \% \%$

Is Quicksort correct?

Assuming Partition is correct

Proof by induction

- Base case: Quicksort works on a list of 1 element
- Inductive case
- Assume Quicksort sorts arrays for arrays of smaller < n elements, show that it works to sort n elements
- If partition works correctly then we have:
- and, by our inductive assumption, we have:

A| sorted |
| :--- |
| spivot |
| \square |

Running time of Quicksort?	$\because \because: 8$
Worst case?	
Each call to Partition splits the array into an empty array	
and $\mathrm{n}-1$ array	
\square	
\square	\square
\square	

Quicksort: Worse case running time

$$
T(n)=T(n-1)+\Theta(n)
$$

Which is? $\Theta\left(\mathbf{n}^{2}\right)$
When does this happen?

- sorted
- reverse sorted
- near sorted/reverse sorted

Quicksort best case?

Each call to Partition splits the array into two equal parts

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

O($n \log n$)

When does this happen?

- random data?

Quicksort Average case?

How close to "even" splits do they need to be to maintain an $O(n \log n)$ running time?

Say the Partition procedure always splits the array into some constant ratio b-to-a, e.g. 9-to-1

What is the recurrence?

$$
T(n) \leq T\left(\frac{a}{a+b} n\right)+T\left(\frac{b}{a+b} n\right)+c n
$$

Quicksort average case: take 2
 $\because \because: \circ$:O.

What would happen if half the time Partition produced a "bad" split and the other half "good"?

$$
T(n)=2 T\left(\frac{n-1}{2}\right)+\Theta(n)
$$

How can we avoid the worst case?

What is the running time of randomized Quicksort?

Worst case?

$$
O\left(n^{2}\right)
$$

Still could get very unlucky and pick "bad" partitions at every step

randomized Quicksort: expected running time

How many calls are made to Partition for an input of size n ?

n

What is the cost of a call to Partition?

Cost is proportional to the number of iterations of the for loop

```
Partition(A,p,r) the total number of
```

Partition(A,p,r) the total number of
i}\leftarrowp-
i}\leftarrowp-
comparisons will give
comparisons will give
for }j\leftarrowp\mathrm{ to }r-1,us,u\mathrm{ us bound on the
for }j\leftarrowp\mathrm{ to }r-1,us,u\mathrm{ us bound on the
if A[j]\leqA[r], running time
if A[j]\leqA[r], running time
i\leftarrowi+1
i\leftarrowi+1
swap }A[i]\mathrm{ and }A[j
swap }A[i]\mathrm{ and }A[j
swap }A[i+1] and A[r
swap }A[i+1] and A[r
return i+1
return i+1
will give

```
will give
```


Counting the number of comparisons

Let z_{i} of $z_{1}, z_{2}, \ldots, z_{n}$ be the i th smallest element

Let Z_{ij} be the set of elements $\mathrm{Z}_{\mathrm{ij}}=\mathrm{z}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}+1}, \ldots, \mathrm{z}_{\mathrm{j}}$

$$
A=[3,9,7,2]
$$

$z_{1}=2$
$\mathrm{z}_{2}=3 \quad \mathrm{Z}_{24}=$
$\mathrm{z}_{3}=7$
$z_{4}=9$

Inject randomness into the data

Randomized-Partition (A, p, r)
$i \leftarrow \operatorname{Random}(p, r)$
swap $A[r]$ and $A[i]$
3 returnPartition (A, p, r)

Counting the number of comparisons

Let z_{i} of $z_{1}, z_{2}, \ldots, z_{n}$ be the i th smallest element

Let $Z_{i j}$ be the set of elements $Z_{i j}=z_{i}, z_{i+1}, \ldots, z_{j}$

$$
A=[3,9,7,2]
$$

$z_{1}=2$
$\mathrm{z}_{2}=3 \quad \mathrm{Z}_{24}=[3,7,9]$
$z_{3}=7$
$z_{4}=9$

Counting comparisons

```
Let }\mp@subsup{X}{ij}{}=I{\mp@subsup{z}{i}{}\mathrm{ is compared to }\mp@subsup{z}{j}{}}={\begin{array}{ll}{1}&{\mathrm{ if }\mp@subsup{z}{i}{}\mathrm{ is compared to }\mp@subsup{z}{j}{}}\\{0}&{\mathrm{ otherwise }} (indicator random variable)
```

- How many times can z_{i} be compared to z_{j} ?
- At most once. Why?

Total number of
comparisons

$$
X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}
$$

Counting comparisons: average running time

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right\rfloor \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \quad \begin{array}{l}
\text { expectation of sums is the sum of } \\
\text { expectations }
\end{array} \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p\left\{z_{i} \text { is compared to } z_{j}\right\}
\end{aligned}
$$

remember,

$$
X_{i j}=I\left\{z_{i} \text { is compared to } z_{j}\right\}= \begin{cases}1 & \text { if } z_{i} \text { is compared to } z_{j} \\ 0 & \text { otherwise }\end{cases}
$$

$$
p\left\{z_{i} \text { is compared to } z_{j}\right\} ?
$$

- The pivot element separates the set of numbers into two sets (those less than the pivot and those larger). Elements from one set will never be compared to elements of the other set
- If a pivot x is chosen $z_{i}<x<z_{j}$ then z_{i} and z_{j} how many times will z_{i} and z_{j} be compared?
- What is the only time that z_{i} and z_{j} will be compared?
- In $Z_{i j}$, when will z_{i} and z_{j} will be compared?

$p\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}$	$?$
$p\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}$ $p(a, \mathrm{~b})=\mathrm{p}(\mathrm{a})+\mathrm{p}(\mathrm{b})$ for independent events pivot is chosen randomly over $j-i+1$ elements $=p\left\{z_{i}\right.$ or z_{j} is first pivot chosen from $\left.Z_{i j}\right\}+$ $p\left\{z_{j}\right.$ is first pivot chosen from $\left.Z_{i j}\right\}$	
$=\frac{1}{j-1+1}+\frac{1}{j-1+1}$	
$=\frac{2}{j-1+1}$	

E[X]?	
$E[X]$	$=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$
	$=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{k+1} \quad$ Let $k=j-i$
	$<\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{k}$
	$=\sum_{i=1}^{n-1} O(\log n) \quad \sum_{k=1}^{n} 2 / k=\ln n+O(1)=O(\log n)$
	$=O(n \log n)$

Merge-Sort: Another view Merge-Sort2 (A, p, r) if $p<r$ $q \leftarrow\lfloor(\mathrm{p}+\mathrm{r}) / 2\rfloor$ Merge-Sort2 (A, p, q) Merge-Sort2 $(A, q+1, r)$ $\operatorname{Merge} 2(A, p, q, r)$

Merge-Sort: Another view

$1 n_{1} \leftarrow q-p+1 \triangleright$ length of the left array
$2 n_{2} \leftarrow r-q \quad \triangleright$ length of the right array
create arrays $L\left[1 . . n_{1}+1\right]$ and $R\left[1 \ldots n_{2}+1\right]$
for $i \leftarrow 1$ to n_{1}
$L[i] \leftarrow A[p+i-1]$
for $j \leftarrow 1$ to n_{2}
$R[j]$
$L\left[n_{1}+1\right] \leftarrow A[q+j]$
$L\left[n_{1}+1\right] \leftarrow \infty$
$R\left[n_{2}+1\right] \leftarrow \infty$
$i \leftarrow 1$
$j \leftarrow 1$
for $k \leftarrow p$ to r if $L[i] \leq R[j]$ $A[k] \leftarrow L[i]$
$i \leftarrow i+1$
else
$A[k] \leftarrow R[j]$
$j \leftarrow j+1$

Merge-Sort2 Running time?	

Merge-Sort2 Running time? Same as MergeSort except the cost to divide the arrays is constant, i.e. $D(n)=c$ Still results in: $T(n)=\left\{\begin{array}{cc\|}c & \text { if } n \text { is small } \\ 2 T(n / 2)+c n & \text { otherwise }\end{array}\right.$

Memory? MergeSort $S(n)=\left\{\begin{array}{cc} c & \text { if } n \text { is small } \\ 2 S(n / 2)+c n & \text { otherwise } \end{array}\right.$	
MergeSort2 $S(n)=\left\{\begin{array}{cc} c & \text { if } n \text { is small } \\ c n & \text { otherwise } \end{array}\right.$	

Memory?	
MergeSort2	

